Skip to main content
Log in

On Algebras of Finite General Representation Type

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

We introduce the notion of “finite general representation type” for a finite-dimensional algebra, a property related to the “dense orbit property” introduced by Chindris-Kinser-Weyman. We use an interplay of geometric, combinatorial, and algebraic methods to produce a family of algebras of wild representation type but finite general representation type. For completeness, we also give a short proof that the only local algebras of discrete general representation type are already of finite representation type. We end with a Brauer-Thrall style conjecture for general representations of algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Assem, I., Simson, D., Skowroński, A.: Elements of the representation theory of associative algebras. Vol. 1. London Mathematical Society Student Texts, vol. 65. Cambridge University Press, Cambridge (2006). Techniques of representation theory

  2. Bautista, R.: On algebras of strongly unbounded representation type. Comment. Math. Helv. 60(3), 392–399 (1985)

    Article  MathSciNet  Google Scholar 

  3. Bleher, F.M., Chinburg, T., Huisgen-Zimmermann, B.: The geometry of finite dimensional algebras with vanishing radical square. J. Algebra 425, 146–178 (2015)

    Article  MathSciNet  Google Scholar 

  4. Babson, E., Huisgen-Zimmermann, B., Thomas, R.: Generic representation theory of quivers with relations. J. Algebra 322(6), 1877–1918 (2009)

    Article  MathSciNet  Google Scholar 

  5. Bobiński, G.: On moduli spaces for quasitilted algebras. Algebra Number Theory 8(6), 1521–1538 (2014)

    Article  MathSciNet  Google Scholar 

  6. Bobiński, G.: Algebras with irreducible module varieties III: Birkhoff varieties. Int. Math. Res. Not. IMRN 4, 2497–2525 (2021)

    Article  MathSciNet  Google Scholar 

  7. Bongartz, K.: A geometric version of the Morita equivalence. J. Algebra 139(1), 159–171 (1991)

    Article  MathSciNet  Google Scholar 

  8. Armand Borel. Linear algebraic groups. Graduate Texts in Mathematics, vol. 126, 2nd ed. Springer-Verlag, New York (1991)

  9. Crawley-Boevey, W.W.: On tame algebras and bocses. Proc. London Math. Soc. (3) 56(3), 451–483 (1988)

  10. Crawley-Boevey, W.: On homomorphisms from a fixed representation to a general representation of a quiver. Trans. Amer. Math. Soc. 348(5), 1909–1919 (1996)

    Article  MathSciNet  Google Scholar 

  11. Crawley-Boevey, W.: Subrepresentations of general representations of quivers. Bull. London Math. Soc. 28(4), 363–366 (1996)

    Article  MathSciNet  Google Scholar 

  12. Crawley-Boevey, W., Schröer, J.: Irreducible components of varieties of modules. J. Reine Angew. Math. 553, 201–220 (2002)

    MathSciNet  Google Scholar 

  13. Carroll, A.T., Chindris, C.: Moduli spaces of modules of Schur-tame algebras. Algebr. Represent. Theory 18(4), 961–976 (2015)

    Article  MathSciNet  Google Scholar 

  14. Carroll, A.T., Chindris, C., Kinser, R., Weyman, J.: Moduli spaces of representations of special biserial algebras. Int. Math. Res. Not. IMRN 2, 403–421 (2020)

    Article  MathSciNet  Google Scholar 

  15. Chindris, C., Kinser, R.: Decomposing moduli of representations of finite-dimensional algebras. Math. Ann. 372(1–2), 555–580 (2018)

    Article  MathSciNet  Google Scholar 

  16. Chindris, C., Kinser, R., Weyman, J.: Module varieties and representation type of finite-dimensional algebras. Int. Math. Res. Not. IMRN 3, 631–650 (2015)

    Article  MathSciNet  Google Scholar 

  17. Craw, A., Smith, G.G.: Projective toric varieties as fine moduli spaces of quiver representations. Amer. J. Math. 130(6), 1509–1534 (2008)

    Article  MathSciNet  Google Scholar 

  18. Dade, E.C.: Algebraically rigid modules. In: Representation theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979). Lecture Notes in Math, vol. 832, pp. 195–215. Springer, Berlin (1980)

  19. Derksen, H., Fei, J.: General presentations of algebras. Adv. Math. 278, 210–237 (2015)

    Article  MathSciNet  Google Scholar 

  20. Demonet, L., Iyama, O., Jasso, G.: \(\tau \)-tilting finite algebras, bricks, and \(g\)-vectors. Int. Math. Res. Not. IMRN 3, 852–892 (2019)

    Article  MathSciNet  Google Scholar 

  21. Dowbor, P., Meltzer, H., Schmidmeier, M.: The “\(0,1\)-property’’ of exceptional objects for nilpotent operators of degree 6 with one invariant subspace. J. Pure Appl. Algebra 223(7), 3150–3203 (2019)

    Article  MathSciNet  Google Scholar 

  22. Drozd, J.A.: Tame and wild matrix problems. In: Representation theory, II (Proc. Second Internat. Conf., Carleton Univ., Ottawa, Ont., 1979). Lecture Notes in Math, vol. 832, pp. 242–258. Springer, Berlin (1980)

  23. Derksen, H., Schofield, A., Weyman, J.: On the number of subrepresentations of a general quiver representation. J. Lond. Math. Soc. (2) 76(1), 135–147 (2007)

  24. Derksen, H., Weyman, J.: On the canonical decomposition of quiver representations. Compos. Math. 133(3), 245–265 (2002)

    Article  MathSciNet  Google Scholar 

  25. Derksen, H., Weyman, J.: An introduction to quiver representations. Graduate Studies in Mathematics, vol. 184. American Mathematical Society, Providence (2017)

    Book  Google Scholar 

  26. Goodearl, K.R., Huisgen-Zimmermann, B.: Understanding finite dimensional representations generically. In: Geometric and topological aspects of the representation theory of finite groups. Springer Proc. Math. Stat., vol. 242, pp. 131–179. Springer, Cham (2018)

  27. Hesselink, W.: Singularities in the nilpotent scheme of a classical group. Trans. Amer. Math. Soc. 222, 1–32 (1976)

    Article  MathSciNet  Google Scholar 

  28. Hoshino, M., Miyachi, J.-I.: Tame two-point algebras. Tsukuba J. Math. 12(1), 65–96 (1988)

    Article  MathSciNet  Google Scholar 

  29. Huisgen-Zimmermann, B.: Fine and coarse moduli spaces in the representation theory of finite dimensional algebras. In: Expository lectures on representation theory. Contemp. Math., vol. 607, pp. 1–34. Amer. Math. Soc., Providence (2014)

  30. Kac, V.G.: Root systems, representations of quivers and invariant theory. In: Invariant theory (Montecatini, 1982), Lecture Notes in Math., vol. 996, pp. 74–108. Springer, Berlin (1983)

  31. King, A.D.: Moduli of representations of finite-dimensional algebras. Quart. J. Math. Oxford Ser. (2) 45(180), 515–530 (1994)

  32. Kaniecki, M., Kosakowska, J., Schmidmeier, M.: Operations on arc diagrams and degenerations for invariant subspaces of linear operators. Part II. Comm. Algebra 46(5), 2243–2263 (2018)

    Article  MathSciNet  Google Scholar 

  33. Kosakowska, J., Schmidmeier, M.: Operations on arc diagrams and degenerations for invariant subspaces of linear operators. Trans. Amer. Math. Soc. 367(8), 5475–5505 (2015)

    Article  MathSciNet  Google Scholar 

  34. Kosakowska, J., Schmidmeier, M.: Box moves on Littlewood-Richardson tableaux and an application to invariant subspace varieties. J. Algebra 491, 241–264 (2017)

    Article  MathSciNet  Google Scholar 

  35. Kosakowska, J., Schmidmeier, M.: The boundary of the irreducible components for invariant subspace varieties. Math. Z. 290(3–4), 953–972 (2018)

    Article  MathSciNet  Google Scholar 

  36. Mousavand, K.: \(\tau \)-tilting finiteness of non-distributive algebras and their module varieties. J. Algebra 608, 673–690 (2022). https://doi.org/10.1016/j.jalgebra.2022.06.018

  37. Mousavand, K., Paquette, C.: Minimal (\(\tau \)-)tilting infinite algebras. Nagoya Math. J. 249, 221–238 (2023). https://doi.org/10.1017/nmj.2022.28

  38. Reineke, M.: The Harder-Narasimhan system in quantum groups and cohomology of quiver moduli. Invent. Math. 152(2), 349–368 (2003)

    Article  MathSciNet  Google Scholar 

  39. Michael Ringel, C., Schmidmeier, M.: Submodule categories of wild representation type. J. Pure Appl. Algebra 205(2), 412–422 (2006)

    Article  MathSciNet  Google Scholar 

  40. Michael Ringel, C., Schmidmeier, M.: The Auslander-Reiten translation in submodule categories. Trans. Amer. Math. Soc. 360(2), 691–716 (2008)

    Article  MathSciNet  Google Scholar 

  41. Michael Ringel, C., Schmidmeier, M.: Invariant subspaces of nilpotent linear operators. I. J. Reine Angew. Math. 614, 1–52 (2008)

    MathSciNet  Google Scholar 

  42. Schofield, A.: General representations of quivers. Proc. London Math. Soc. (3) 65(1), 46–64 (1992)

  43. Schofield, A.: Birational classification of moduli spaces of representations of quivers. Indag. Math. (N.S.), 12(3):407–432 (2001)

  44. Schiffler, R.: Quiver representations. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, Cham (2014)

  45. Smalø, S.O.: The inductive step of the second Brauer-Thrall conjecture. Canad. J. Math. 32(2), 342–349 (1980)

    Article  MathSciNet  Google Scholar 

  46. Voigt, D.: Induzierte Darstellungen in der Theorie der endlichen, algebraischen Gruppen. Lecture Notes in Mathematics, vol. 592. Springer-Verlag, Berlin (1977)

Download references

Acknowledgements

We thank Grzegorz Bobiński, Hipolito Treffinger, Kaveh Mousavand, and Charles Paquette for their comments. We also thank Jenna Rajchgot for the M2 consultation related to Example 4.74. Finally, we appreciate an anonymous referee’s diligent reading and thoughtful suggestions which substantially improved the readability and correctness of the final draft.

Funding

This work was supported by a grant from the Simons Foundation (636534, RK) and by the National Science Foundation under Award No. DMS-2303334.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Kinser.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kinser, R., Lara, D. On Algebras of Finite General Representation Type. Transformation Groups (2024). https://doi.org/10.1007/s00031-024-09856-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00031-024-09856-1

Keywords

2020 Mathematics Subject Classification:

Navigation