C. Arias Abad, M. Crainic, The Weil algebra and the Van Est isomorphism, Ann. Inst. Fourier (Grenoble) 61 (2011), no. 3, 927–970.
MathSciNet
Article
Google Scholar
M. Bailey, M. Gualtieri, Integration of generalized complex structures, arXiv: 1611.03850 (2016).
D. Broka, P. Xu, Symplectic realizations of holomorphic Poisson manifolds, arXiv: 1512.08847 (2015).
H. Bursztyn, A. Cabrera, Multiplicative forms at the infinitesimal level, Math. Ann. 353 (2012), no. 5, 663–705.
MathSciNet
Article
Google Scholar
H. Bursztyn, M. Crainic, A.Weinstein, C. Zhu, Integration of twisted Dirac brackets, Duke Math. J. 123 (2004), 549–607.
MathSciNet
Article
Google Scholar
H. Bursztyn, T. Drummond, Lie theory of multiplicative tensors, Math. Ann. 375 (2019), 1489–1554.
MathSciNet
Article
Google Scholar
A. Cabrera, T. Drummond, Van est isomorphism for homogeneous cochains, Pac. J. Math. 287 (2017), no. 2, 297–336.
MathSciNet
Article
Google Scholar
A. Cabrera, I. Mărcuţ, M. A. Salazar, On local integration of Lie brackets, J. Reine Angew. Math. 760 (2020), 267–293.
MathSciNet
Article
Google Scholar
A. Coste, P. Dazord, A. Weinstein, Groupoïdes symplectiques, Publications du Département de Mathématiques de Lyon 2A (1987), 1–62.
MATH
Google Scholar
M. Crainic, Generalized complex structures and Lie brackets, Bull. Braz. Math. Soc. (N.S.) 42 (2011), no. 4, 559–578.
MathSciNet
Article
Google Scholar
M. Crainic, R. L. Fernandes, Integrability of Lie brackets, Ann. of Math. (2) 157 (2003), no. 2, 575–620.
M. Crainic, R. L. Fernandes, Lectures on integrability of Lie brackets, Geom. Topol. Monogr. 17 (2011), 1–107.
MathSciNet
MATH
Google Scholar
M. Crainic, I. Mărcuţ, On the existence of symplectic realizations, J. Symp. Geom. 9 (2011), no. 4, 435–444.
MathSciNet
Article
Google Scholar
M. Crainic, M. A. Salazar, I. Struchiner, Multiplicative forms and Spencer operators, Math. Z. 279 (2015), 939–979.
MathSciNet
Article
Google Scholar
M. Crainic, M. A. Salazar, Jacobi structures and Spencer operators, J. Math. Pures Appl. (9) 103 (2015), no. 2, 504–521.
M. Crainic, C. Zhu, Integrability of Jacobi and Poisson structures, Ann. Inst. Fourier (Grenoble) 57 (2007), 1181–1216.
MathSciNet
Article
Google Scholar
T. Drummond, L. Egea, Differential forms with values in VB-groupoids and its Morita invariance, J. Geom. Phys. 135 (2019), 42–69.
MathSciNet
Article
Google Scholar
R. L. Fernandes, Lie algebroids, holonomy and characteristic classes, Adv. Math. 170 (2002), no. 1, 119–179.
MathSciNet
Article
Google Scholar
P. Frejlich, I. MMărcuţ, On dual pairs in Dirac geometry, Math. Z. 289 (2018), no. 1-2, 171–200.
MathSciNet
Article
Google Scholar
A. Gracia-Saz, R. Mehta, Lie algebroid structures on double vector bundles and representation theory of Lie algebroids, Adv. Math. 223 (2010), 1236–1275.
MathSciNet
Article
Google Scholar
M. Gualtieri, Generalized complex geometry, Ann. of Math. (2) 174 (2011), no. 1, 75–123.
D. Iglesias Ponte, C. Laurent-Gangoux, P. Xu, Universal lifting theorem and quasi-Poisson groupoids, J. Eur. Math. Soc. JEMS 14 (2012), no. 3, 681–731.
MathSciNet
Article
Google Scholar
A. A. Кириллов, Локальные алгебры Ли, уmh 31 (1976), Выкл. 4(190), 57–76. Engl. transl.: A. A. Kirillov, Local Lie algebras, Russian Math. Surveys bf 31 (1976), no. 4, 55–75.
Y. Kosmann-Schwarzbach, F. Magri, Poisson–Nijnehuis structures, Ann. Inst. Henri Poincaré 53 (1990), 35–81.
MATH
Google Scholar
D. Li-Bland, E. Meinrenken, On the van Est homomorphism for Lie groupoids, Enseign. Math. 61 (2015), no. 1–2, 93–137.
MathSciNet
Article
Google Scholar
A. Lichnerowicz, Les variétés de Jacobi et leurs algèbres de Lie associés, J. Math. Pures Appl. (9) 57 (1978), 453–488.
MathSciNet
MATH
Google Scholar
K. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, London Mathematical Society Lecture Note Series, Vol. 213, Cambridge University Press, Cambridge, 2005.
Book
Google Scholar
F. Petalidou, On the symplectic realization of Poisson–Nijenhuis manifolds, arXiv: 1501.07830 (2015).
M. A. Salazar, Pfaffian Groupoids, Ph.D. thesis, Utrecht University, 2013.
M. Stiénon, P. Xu, Poisson quasi-Nijenhuis manifolds, Comm. Math. Phys. 270 (2007), no. 3, 709–725.
MathSciNet
Article
Google Scholar
O. Yudilevich, The role of the Jacobi identity in solving the Maurer–Cartan structure equation, Pacific J. Math. 282 (2016), no. 2, 487–510.
MathSciNet
Article
Google Scholar