Skip to main content
Log in

Strong homotopy Lie algebras, homotopy Poisson manifolds and Courant algebroids

  • Published:
Letters in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study Maurer–Cartan elements on homotopy Poisson manifolds of degree n. They unify many twisted or homotopy structures in Poisson geometry and mathematical physics, such as twisted Poisson manifolds, quasi-Poisson \(\mathfrak g\)-manifolds, and twisted Courant algebroids. Using the fact that the dual of an n-term \(L_\infty \)-algebra is a homotopy Poisson manifold of degree \(n-1\), we obtain a Courant algebroid from a 2-term \(L_\infty \)-algebra \(\mathfrak g\) via the degree 2 symplectic NQ-manifold \(T^*[2]\mathfrak g^*[1]\). By integrating the Lie quasi-bialgebroid associated to the Courant algebroid, we obtain a Lie-quasi-Poisson groupoid from a 2-term \(L_\infty \)-algebra, which is proposed to be the geometric structure on the dual of a Lie 2-algebra. These results lead to a construction of a new 2-term \(L_\infty \)-algebra from a given one, which could produce many interesting examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. There are different ways to describe the double of a Lie bialgebroid, e.g. Mackenzie gave the description of Drinfeld doubles for Lie bialgebroids using double Lie algebroids in [24]; Roytenberg and Voronov gave the description of Drinfeld doubles for Lie bialgebroids using graded manifolds in [28, 39] respectively.

  2. By definition, there is an \(L_\infty \)-algebra structure on the complex of section spaces together with some compatibility conditions. See [7, 35] for more details.

References

  1. Alekseev, A., Kosmann-Schwarzbach, Y.: Manin pairs and moment maps. J. Differ. Geom. 56, 133–165 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alekseev, A., Kosmann-Schwarzbach, Y., Meinrenken, E.: Quasi-Poisson manifolds. Can. J. Math. 54, 3–29 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alexandrov, M., Kontsevich, M., Schwartz, A., Zaboronsky, O.: The geometry of the master equation and topological quantum field theory. Int. J. Mod. Phys. A 12, 1405 (1997)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Baez, J.C., Crans, A.S.: Higher-dimensional algebra VI: Lie 2-algebras. Theory Appl. Categ. 12, 492–528 (2004)

    MathSciNet  MATH  Google Scholar 

  5. Baez, J.C., Hoffnung, A.E., Rogers, C.L.: Categorified symplectic geometry and the classical string. Commun. Math. Phys. 293(3), 701–725 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Baez, J.C., Rogers, C.L.: Categorified symplectic geometry and the string Lie 2-algebra. Homol. Homotopy Appl. 12(1), 221–236 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonavolontà, G., Poncin, N.: On the category of Lie \(n\)-algebroids. J. Geom. Phys. 73, 79–90 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bruce, A.: From \(L_\infty \)-algebroids to higher Schouten/Poisson structures. Rep. Math. Phys. 67(2), 157–177 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Cattaneo, A.S., Fiorenza, D., Longoni, R.: Graded Poisson Algebras. Encycl. Math. Phys. 2, 560–567 (2006)

    Article  Google Scholar 

  10. Cattaneo, A.S., Felder, G.: Relative formality theorem and quantisation of coisotropic submanifolds. Adv. Math. 208(2), 521–548 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cattaneo, A.S., Zambon, M.: A supergeometric approach to Poisson reduction. Commun. Math. Phys. 318(3), 675–716 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Chen, Z., Stiénon, M., Xu, P.: Poisson 2-groups. J. Differ. Geom. 94(2), 209–240 (2013)

    Article  MATH  Google Scholar 

  13. Fregier, Y., Zambon, M.: Simultaneous deformations and Poisson geometry. Compos. Math. 151(9), 1763–1790 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hansen, M. Strobl, T.: First class constrained systems and twisting of courant algebroids by a closed \(4\)-form. Fundamental interactions, pp. 115–144. World Sci. Publ., Hackensack (2010)

  15. Iglesias Ponte, D., Laurent-Gengoux, C., Xu, P.: Universal lifting theorem and quasi-Poisson groupoids. J. Eur. Math. Soc. (JEMS) 14(3), 681–731 (2012)

  16. Ikeda, N., Xu, X.: Canonical functions, differential graded symplectic pairs in supergeometry, and Alexandrov-Kontsevich-Schwartz-Zaboronsky sigma models with boundaries. J. Math. Phys. 55, 113505 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Khudaverdian, H.M., Voronov, Th.: Higher Poisson brackets and differential forms. Geometric methods in physics, pp. 203–215. AIP Conf. Proc., : Am. Inst. Phys, Melville, NY (1079) (2008)

  18. Kosmann-Schwarzbach, Y.: Jacobian quasi-bialgebras and quasi-Poisson Lie groups. Mathematical aspects of classical field theory (Seattle, WA, 1991), vol. 132, pp. 459–489. Contemp. Math., Am. Math. Soc., Providence, RI (1992)

  19. Kosmann-Schwarzbach, Y.: Quasi, twisted, and all that... in Poisson geometry and Lie algebroid theory. The breadth of symplectic and Poisson geometry, vol. 232, pp. 363–389. Progr. Math. Birkhäuser Boston, Boston (2005)

  20. Kosmann-Schwarzbach, Y.: Poisson and symplectic functions in Lie algebroid theory. Higher structures in geometry and physics, vol. 287, pp. 243–268. Progr. Math. Birkhäuser/Springer, New York (2011)

  21. Lada, T., Markl, M.: Strongly homotopy Lie algebras. Commun. Algebra 23(6), 2147–2161 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lada, T., Stasheff, J.: Introduction to sh Lie algebras for physicists. Int. J. Theor. Phys. 32(7), 1087–1103 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, Z., Weinstein, A., Xu, P.: Manin triples for Lie bialgebroids. J. Differ. Geom. 45, 547–574 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mackenzie, K.C.H.: Ehresmann doubles and Drinfel’d doubles for Lie algebroids and Lie bialgebroids. J. Reine Angew. Math. 658, 193–245 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Mackenzie, K.C.H., Xu, P.: Lie bialgebroids and Poisson groupoids. Duke Math. J. 73(2), 415–452 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mehta, R.A.: On homotopy Poisson actions and reduction of symplectic \(Q\)-manifolds. Differ. Geom. Appl. 29(3), 319–328 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Roytenberg, D., Weinstein, A.: Courant algebroids and strongly homotopy Lie algebras. Lett. Math. Phys. 46(1), 81–93 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Roytenberg, D.: On the structure of graded symplectic supermanifolds and Courant algebroids. Quantization, Poisson Brackets and Beyond, vol. 315, pp. 169–185. Contemp. Math., Am. Math. Soc., Providence, RI (2002)

  29. Roytenberg, D.: Quasi-Lie bialgebroids and twisted Poisson manifold. Lett. Math. Phys. 61(2), 123–137 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Roytenberg, D.: Courant algebroids, derived brackets and even symplectic supermanifolds. Ph. D thesis, UC Berkeley (1999). arXiv:math.DG/9910078

  31. Roytenberg, D.: On weak Lie \(2\)-algebras. XXVI Workshop on Geometrical Methods in Physics, vol. 956, pp. 180–198. AIP Conf. Proc., Am. Inst. Phys., Melville (2007)

  32. Schätz, F.: Coisotropic submanifolds and the BFV-complex. Ph. D thesis, University Zürich (2009)

  33. Ševera, P.: Some title containing the words “homotopy” and “symplectic”, e.g. this one. Travaux math \(\acute{e}\) matiques. Fasc. XVI, pp. 121–137. Trav. Math., XVI, Univ. Luxemb., Luxembourg (2005)

  34. Ševera, P., Weinstein, A.: Poisson geometry with a 3-form background. Prog. Theor. Phys. Suppl. 144, 145–154 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Sheng, Y., Zhu, C.: Higher Extensions of Lie Algebroids. Commun. Contemp. Math. (2016). doi:10.1142/S0219199716500346

  36. Sheng, Y., Zhu, C.: Semidirect products of representations up to homotopy. Pac. J. Math. 249(1), 211–236 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sheng, Y., Zhu, C.: Integration of semidirect product Lie 2-algebras. Int. J. Geom. Methods Mod. Phys.9(5), 1250043 (2012)

  38. Stasheff, J.: Differential graded Lie algebras, quasi-Hopf algebras and higher homotopy algebras. Quantum groups (Leningrad, 1990), vol. 1510, pp. 120–137. Lecture Notes in Math. Springer, Berlin (1992)

  39. Voronov, Th: Graded manifolds and Drinfeld doubles for Lie bialgebroids. Contemp. Math. 315, 131–168 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  40. Voronov, Th: Higher derived brackets and homotopy algebras. J. Pure Appl. Algebra 202(1–3), 133–153 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  41. Weinstein, A.: Omni-Lie algebras. Microlocal analysis of the Schrödinger equation and related topics (Japanese) (Kyoto, 1999). S\({\bar{u}}\)rikaisekikenky\({\bar{u}}\)sho K\({\bar{u}}\)ky\({\bar{u}}\)roku 1176, 95–102 (2000)

  42. Xu, X.: Twisted Courant algebroids and coisotropic Cartan geometries. J. Geom. Phys. 82, 124–131 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We give our warmest thanks to Jim Stasheff and the referee for very helpful comments that improve the paper. We also give our special thanks to Noriaki Ikeda, Zhangju Liu, Pavol Ševera and Chenchang Zhu for very useful comments and discussions. We thank Marco Zambon for pointing out the reference [26] to us.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunhe Sheng.

Additional information

Research supported by NSFC (11101179,11471139) and NSF of Jilin Province (20140520054JH). Xiaomeng Xu was partially supported by the SNSF Grants P2GEP2-165118 and NCCR SwissMAP.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, H., Sheng, Y. & Xu, X. Strong homotopy Lie algebras, homotopy Poisson manifolds and Courant algebroids. Lett Math Phys 107, 861–885 (2017). https://doi.org/10.1007/s11005-016-0925-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11005-016-0925-8

Keywords

Mathematics Subject Classification

Navigation