Skip to main content
Log in

Exterior powers of the reflection representation in Springer theory

  • Published:
Transformation Groups Aims and scope Submit manuscript

An Erratum to this article was published on 03 August 2011

Abstract

Let \( {H^*}\left( {{\mathcal{B}_e}} \right) \) be the total Springer representation of W for the nilpotent element e in a simple Lie algebra \( \mathfrak{g} \). Let Λi V denote the ith exterior power of the reflection representation V of W. The focus of this paper is on the algebra of W-invariants in

$$ {H^*}\left( {{\mathcal{B}_e}} \right) \otimes {\Lambda^*}V $$

and we show that it is an exterior algebra on the subspace \( {\left( {{H^*}\left( {{\mathcal{B}_e}} \right) \otimes V} \right)^W} \) in some cases that were not previously known. This result was established for e = 0 by Solomon [28] and was proved by Henderson [17] in types A, B, C when e is regular in a Levi subalgebra.

The above statement about the W-invariants implies a conjecture of Lehrer–Shoji [19] about the occurrences of Λi V in \( {H^*}\left( {{\mathcal{B}_e}} \right) \), which was originally stated when e is regular in a Levi subalgebra. In this paper we prove the Lehrer–Shoji conjecture in all types and its natural extension to any nilpotent e, not only those that are regular in a Levi subalgebra.

In the last part of the paper we make a connection to rational Cherednik algebras and this leads to an explanation for the appearance in Springer theory of the Orlik–Solomon exponents coming from hyperplane arrangements. This connection was established in the classical groups in [19], [30] after being observed empirically by Orlik, Solomon, and Spaltenstein in the exceptional groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Berest, P. Etingof, V. Ginzburg, Finite-dimensional representations of rational Cherednik algebras, Internat. Math. Res. Not. 19 (2003), 1053–1088.

    Article  MathSciNet  Google Scholar 

  2. D. Bessis, V. Reiner, Cyclic sieving of noncrossing partitions for complex reflection groups, math/0701792.

  3. W. M. Beynon, N. Spaltenstein, Green functions of finite Chevalley groups of type E n , J. Algebra 88 (1984), no. 2, 584–614.

    Article  MathSciNet  MATH  Google Scholar 

  4. W. Borho, R. MacPherson, Représentations des groupes de Weyl et homologie d’intersection pour les variétés nilpotentes, C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 15, 707–710.

    MathSciNet  MATH  Google Scholar 

  5. A. Broer, Lectures on decomposition classes, in: Representation Theories and Algebraic Geometry (Montreal, PQ, 1997), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., Vol. 514, Kluwer Acad. Publ., Dordrecht, 1998, pp. 39–83.

    Google Scholar 

  6. J. Brundan, S. Goodwin, Good grading polytopes, Proc. Lond. Math. Soc. (3) 94 (2007), no. 1, 155–180.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. W. Carter, Finite Groups of Lie Type, John Wiley and Sons, Chichester, 1985.

    MATH  Google Scholar 

  8. C. De Concini, G. Lusztig, C. Procesi, Zero set of a nilpotent vector field, J. Amer. Math. Soc. 1 (1988), no. 1, 15–34.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. M. Douglass, The adjoint representation of a reductive group and hyperplane arrangements, Represent. Theory 3 (1999), 444–456 (electronic), http://dx.doi.org/10.1090/S1088-4165-99-00066-7.

    Article  MathSciNet  MATH  Google Scholar 

  10. P. Etingof, Lecture notes on Cherednik algebras, 2010, arXiv:1001.0432.

  11. P. Etingof, Supports of irreducible spherical representations of rational Cherednik algebras of finite Coxeter groups, arXiv:0911.3208.

  12. I. Gordon, On the quotient ring by diagonal invariants, Invent. Math. 153 (2003), no. 3, 503–518.

    Article  MathSciNet  MATH  Google Scholar 

  13. I. Gordon, J. T. Stafford, Rational Cherednik algebras and Hilbert schemes. II. Representations and sheaves, Duke Math. J. 132 (2006), no. 1, 73–135.

    Article  MathSciNet  MATH  Google Scholar 

  14. A. Gyoja, K. Nishiyama, H. Shimura, Invariants for representations of Weyl groups and two-sided cells, J. Math. Soc. Japan 51 (1999), 1–34.

    Article  MathSciNet  MATH  Google Scholar 

  15. M. Haiman, Conjectures on the quotient ring by diagonal invariants, J. Algebraic Combinatorics 3 (1994), no. 1, 17–76.

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Haiman, Combinatorics, symmetric functions, and Hilbert schemes, in: Current Developments in Mathematics, 2002, Int. Press, Somerville, MA, 2003, pp. 39–111.

    Google Scholar 

  17. A. Henderson, Exterior powers of the reflection representation in the cohomology of Springer fibres, Compt. Rend. Math. 348 (2010), no. 19–20, 1055–1058.

    Article  MATH  Google Scholar 

  18. R. Hotta, On Springer’s representations, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 863–876.

    MathSciNet  MATH  Google Scholar 

  19. G. I. Lehrer, T. Shoji, On flag varieties, hyperplane complements and Springer representations of Weyl groups, J. Austral. Math. Soc. Ser. A 49 (1990), no. 3, 449–485.

    Article  MathSciNet  MATH  Google Scholar 

  20. G. Lusztig, Green polynomials and singularities of unipotent classes, Adv. in Math. 42 (1981), no. 2, 169–178.

    Article  MathSciNet  MATH  Google Scholar 

  21. G. Lusztig, Character sheaves, V, Adv. Math. 61 (1986), no. 2, 103–155.

    Article  MathSciNet  MATH  Google Scholar 

  22. G. Lusztig, An induction theorem for Springer’s representations, in: Representation Theory of Algebraic Groups and Quantum Groups, Adv. Stud. Pure Math., Vol. 40, Math. Soc. Japan, Tokyo, 2004, pp. 253–259.

    Google Scholar 

  23. I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1979. Russian transl.: И. Макдональд, Симметрические функции и многочлены Холла, Мир, М., 1985.

    MATH  Google Scholar 

  24. P. Orlik, L. Solomon, Coxeter arrangements, Proc. of Symposia in Pure Math. 40 (1983), 269–291.

    MathSciNet  Google Scholar 

  25. K. Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27 (1980), no. 2, 265–291.

    MathSciNet  MATH  Google Scholar 

  26. T. Shoji, On the Green polynomials of a Chevalley group of type F 4, Comm. Algebra 10 (1982), no. 5, 505–543.

    Article  MathSciNet  MATH  Google Scholar 

  27. T. Shoji, On the Green polynomials of classical groups, Invent. Math. 74 (1983), 239–267.

    Article  MathSciNet  MATH  Google Scholar 

  28. L. Solomon, Invariants of finite reflection groups, Nagoya Math. J. 22 (1963), 57–64.

    MathSciNet  MATH  Google Scholar 

  29. E. Sommers, A family of affine Weyl group representations, Transform. Groups 2 (1997), no. 4, 375–390.

    Article  MathSciNet  MATH  Google Scholar 

  30. N. Spaltenstein, On the reflection representation in Springer’s theory, Comment. Math. Helv. 66 (1991), no. 4, 618–636.

    Article  MathSciNet  MATH  Google Scholar 

  31. T. A. Springer, Trigonometric sums, Green functions of finite groups and representations of Weyl groups, Invent. Math. 36 (1976), 173–207.

    Article  MathSciNet  MATH  Google Scholar 

  32. M. Varagnolo, E. Vasserot, Finite-dimensional representations of DAHA and affine Springer fibers: the spherical case, Duke Math. J. 147 (2009), no. 3, 439–540.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Sommers.

Additional information

To Tonny Springer, on his 85th birthday

Supported by NSF grant DMS-0201826.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00031-011-9160-7

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sommers, E. Exterior powers of the reflection representation in Springer theory. Transformation Groups 16, 889–911 (2011). https://doi.org/10.1007/s00031-011-9148-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-011-9148-3

Keywords

Navigation