Skip to main content
Log in

LEVEL-ZERO VAN DER KALLEN MODULES AND SPECIALIZATION OF NONSYMMETRIC MACDONALD POLYNOMIALS AT t = ∞

  • Published:
Transformation Groups Aims and scope Submit manuscript

Abstract

Let λ  ∈ P+ be a level-zero dominant integral weight, and w the coset representative of minimal length for a coset in W/Wλ, where Wλ is the stabilizer of λ in a finite Weyl group W. In this paper, we give a module \( {\mathbbm{K}}_w^{-}\left(\uplambda \right) \) over the negative part of a quantum affine algebra whose graded character is identical to the specialization at t = ∞ of the nonsymmetric Macdonald polynomial E(q, t) multiplied by a certain explicit finite product of rational functions of q of the form (1 − qr)−1 for a positive integer r. This module \( {\mathbbm{K}}_w^{-}\left(\uplambda \right) \) (called a level-zero van der Kallen module) is defined to be the quotient module of the level-zero Demazure module \( {V}_w^{-}\left(\uplambda \right) \) by the sum of the submodules \( {V}_z^{-}\left(\uplambda \right) \) for all those coset representatives z of minimal length for cosets in W/Wλ such that z > w in the Bruhat order < on W.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Björner, F. Brenti, Combinatorics of Coxeter Groups, Graduate Texts in Mathematics, Vol. 231, Springer, New York, 2005.

  2. F. Brenti, S. Fomin, A. Postnikov, Mixed Bruhat operators and Yang-Baxter equations for Weyl groups, Int. Math. Res. Not. 1999 (1999), no. 8, 419–441.

    Article  MathSciNet  Google Scholar 

  3. J. Beck, H. Nakajima, Crystal bases and two-sided cells of quantum affine algebras, Duke Math. J. 123 (2004), 335–402.

    Article  MathSciNet  Google Scholar 

  4. I. Cherednik, D. Orr, Nonsymmetric difference Whittaker functions, Math. Z. 279 (2015), 879–938.

    Article  MathSciNet  Google Scholar 

  5. E. Feigin, S. Kato, I. Makedonskyi, Representation theoretic realization of non-symmetric Macdonald polynomials at infinity, arXiv:1703.04108 (2017), to appear in J. Reine Angew. Math., https://doi.org/10.1515/crelle-2019-0011.

  6. E. Feigin, I. Makedonskyi, Generalized Weyl modules, alcove paths and Macdonald polynomials, Selecta Math. (N.S.) 23 (2017), 2863–2897.

  7. J. Hong, S.-J. Kang, Introduction to Quantum Groups and Crystal Bases, Graduate Studies in Mathematics, Vol. 42, Amer. Math. Soc., Providence, RI, 2002.

  8. J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, Vol. 29, Cambridge University Press, Cambridge, 1990.

  9. M. Ishii, S. Naito, D. Sagaki, Semi-infinite LakshmibaiSeshadri path model for level-zero extremal weight modules over quantum affine algebras, Adv. Math. 290 (2016), 967–1009.

    Article  MathSciNet  Google Scholar 

  10. V. G. Kac, Infinite Dimensional Lie Algebras, 3rd Edition, Cambridge University Press, Cambridge, UK, 1990.

    Book  Google Scholar 

  11. M. Kashiwara, Crystal bases of modified quantized enveloping algebra, Duke Math. J. 73 (1994), 383–413.

    Article  MathSciNet  Google Scholar 

  12. M. Kashiwara, On level-zero representations of quantized affine algebras, Duke Math. J. 112 (2002), 117–175.

    Article  MathSciNet  Google Scholar 

  13. M. Kashiwara, Level zero fundamental representations over quantized affine algebras and Demazure modules, Publ. Res. Inst. Math. Sci. 41 (2005), 223–250.

    Article  MathSciNet  Google Scholar 

  14. S. Kato, Demazure character formula for semi-infinite flag varieties, Math. Ann. 371 (2018), 1769–1801.

    Article  MathSciNet  Google Scholar 

  15. V. Lakshmibai, P. Littelmann, P. Magyar, Standard monomial theory for BottSamelson varieties, Compositio Math. 130 (2002), 293–318.

    Article  MathSciNet  Google Scholar 

  16. T. Lam, M. Shimozono, Quantum cohomology of G/P and homology of affine Grassmannian, Acta Math. 204 (2010), 49–90.

    Article  MathSciNet  Google Scholar 

  17. C. Lenart, S. Naito, D. Sagaki, A. Schilling, M. Shimozono, A uniform model for Kirillov-Reshetikhin crystals I: Lifting the parabolic quantum Bruhat graph, Int. Math. Res. Not. 2015 (2015), 1848–1901.

    MathSciNet  MATH  Google Scholar 

  18. C. Lenart, S. Naito, D. Sagaki, A. Schilling, M. Shimozono, A uniform model for Kirillov-Reshetikhin crystals II: Alcove model, path model, and P = X, Int. Math. Res. Not. 2017 (2017), 4259–4319.

    MathSciNet  MATH  Google Scholar 

  19. C. Lenart, S. Naito, D. Sagaki, A. Schilling, M. Shimozono, Quantum LakshmibaiSeshadri paths and root operators, in Schubert Calculus — Osaka 2012, Adv. Stud. Pure Math., Vol. 71, Math. Soc. Japan, Tokyo, 2016, pp. 267–294.

  20. C. Lenart, S. Naito, D. Sagaki, A. Schilling, M. Shimozono, A uniform model for KirillovReshetikhin crystals III: Nonsymmetric Macdonald polynomials at t = 0 and Demazure characters, Transform. Groups 22 (2017), 1041–1079.

    Article  MathSciNet  Google Scholar 

  21. P. Littelmann, Paths and root operators in representation theory, Ann. of Math. (2) 142 (1995), 499–525.

  22. G. Lusztig, Hecke algebras and Jantzen’s generic decomposition patterns, Adv. Math. 37 (1980), 121–164.

    Article  MathSciNet  Google Scholar 

  23. G. Lusztig, Periodic W-graphs, Represent. Theory 1 (1997), 207–279.

    Article  MathSciNet  Google Scholar 

  24. S. Naito, F. Nomoto, D. Sagaki, Specialization of nonsymmetric Macdonald polynomials at t = ∞ and Demazure submodules of level-zero extremal weight modules, Trans. Amer. Math. Soc. 370 (2018), 2739–2783.

    Article  MathSciNet  Google Scholar 

  25. S. Naito, F. Nomoto, D. Sagaki, Representation-theoretic interpretation of CherednikOrr’s recursion formula for the specialization of nonsymmetric Macdonald polynomials at t = ∞, Transform. Groups 24 (2019), 155–191.

    Article  MathSciNet  Google Scholar 

  26. S. Naito, D. Orr, D. Sagaki, Chevalley formula for anti-dominant weights in the equivariant K-theory of semi-infinite flag manifolds, arXiv:1808.01468 (2018).

  27. S. Naito, D. Sagaki, Demazure submodules of level-zero extremal weight modules and specializations of Macdonald polynomials, Math. Z. 283 (2016), 937–978.

    Article  MathSciNet  Google Scholar 

  28. D. Peterson, Quantum Cohomology of G/P, Lecture notes, Massachusetts Institute of Technology, Spring 1997.

  29. W. Soergel, KazhdanLusztig polynomials and a combinatoric for tilting modules, Represent. Theory 1 (1997), 83–114.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to DAISUKE SAGAKI.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Satoshi Naito is partially supported by JSPS Grant-in-Aid for Scientific Research (B) 16H03920.

Daisuke Sagaki is partially supported by JSPS Grant-in-Aid for Scientific Research (C) 15K04803.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

NAITO, S., SAGAKI, D. LEVEL-ZERO VAN DER KALLEN MODULES AND SPECIALIZATION OF NONSYMMETRIC MACDONALD POLYNOMIALS AT t = ∞. Transformation Groups 26, 1077–1111 (2021). https://doi.org/10.1007/s00031-020-09586-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-020-09586-0

Navigation