Skip to main content
Log in

A convergence rate of periodic homogenization for forced mean curvature flow of graphs in the laminar setting

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

In this paper, we obtain the rate \(O(\varepsilon ^{1/2})\) of convergence in periodic homogenization of forced graphical mean curvature flows in the laminated setting. We also discuss with an example that a faster rate cannot be obtained by utilizing Lipscthiz estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barles, G., Biton, S., Bourgoing, M., Ley, O.: Uniqueness results for quasilinear parabolic equations through viscosity solutions’ methods. Calc. Var. PDE. 18, 159–179 (2003)

    Article  MathSciNet  Google Scholar 

  2. Caffarelli, L.A., Monneau, R.: Counter-example in three dimension and homogenization of geometric motions in two dimension. Arch. Ration. Mech. Anal. 212, 503–574 (2014)

    Article  MathSciNet  Google Scholar 

  3. Caffarelli, L.A., de la Llave, R.: Planelike minimizers in periodic media. Commun. Pure Appl. Math. 54(12), 1403–1441 (2001)

    Article  MathSciNet  Google Scholar 

  4. Capuzzo-Dolcetta, I., Ishii, H.: On the rate of convergence in homogenization of Hamilton–Jacobi equations. Indiana Univ. Math. J. 50(3), 1113–1129 (2001)

    Article  MathSciNet  Google Scholar 

  5. Cardaliaguet, P., Lions, P.-L., Souganidis, P.E.: A discussion about the homogenization of moving interfaces. J. Math. Pures Appl. (9) 91(4), 339–363 (2009)

    Article  MathSciNet  Google Scholar 

  6. Cesaroni, A., Novaga, M.: Long-time behavior of the mean curvature flow with periodic forcing. Commun. Part. Differ. Equ. 38(5), 780–801 (2011)

    Article  MathSciNet  Google Scholar 

  7. Craciun, B., Bhattacharya, K.: Effective motion of a curvature-sensitive interface through a heterogeneous medium. Interfaces Free Bound 6(2), 151–173 (2004)

    Article  MathSciNet  Google Scholar 

  8. Crandall, M.G., Ishii, H., Lions, P.-L.: User’s guide to viscosity solutions of second order partial differential equations. Bull. Am. Math. Soc. (N.S.) 27, 1–67 (1992)

    Article  MathSciNet  Google Scholar 

  9. Dirr, N., Karali, G., Yip, N.K.: Pulsating wave for mean curvature flow in inhomogeneous medium. Eur. J. Appl. Math 19(6), 661–699 (2008)

    Article  MathSciNet  Google Scholar 

  10. Ecker, K., Huisken, G.: Mean curvature evolution of entire graphs. Ann. Math. 130(3), 453–471 (1989)

    Article  MathSciNet  Google Scholar 

  11. Evans, L.C.: Periodic homogenisation of certain fully nonlinear partial differential equations. Proc. Roy. Soc. Edinburgh Sect. A 120(3–4), 245–265 (1992)

    Article  MathSciNet  Google Scholar 

  12. Gao, H., Kim, I.: Head and tail speeds of mean curvature flow with forcing. Arch. Ration. Mech. Anal. 235(4), 287–654 (2020)

    Article  MathSciNet  Google Scholar 

  13. Gao, H., Long, Z., Xin, J., Yu, Y.: Existence of effective burning velocity in cellular flow for curvature G-equation via game analysis. J. Geom. Anal. 34(81), (2024)

  14. Han, Y., Jang, J.: Rate of convergence in periodic homogenization for convex Hamilton–Jacobi equations with multiscales. Nonlinearity 36(19), 5279–5297 (2023)

    Article  MathSciNet  Google Scholar 

  15. Jang, J., Kwon, D., Mitake, H., Tran, H.V.: Level-set forced mean curvature flow with the Neumann boundary condition. J. de Math. Pures et Appl. 168, 143–167 (2022)

    Article  MathSciNet  Google Scholar 

  16. Lions, P.-L., Papanicolau, G., Varadhan, S.R.S.: Homogenization of Hamilton–Jacobi equations. (unpublished work) (1987)

  17. Lions, P.-L., Souganidis, P.E.: Homogenization of degenerate second-order PDE in periodic and almost periodic environments and applications. Ann. Inst. H. Poincaré Anal. Non Linéaire 22(5), 667–677 (2005)

    Article  MathSciNet  Google Scholar 

  18. Mitake, H., Mooney, C., Tran, H.V., Xin, J., Yu, Y.: Bifurcation of homogenization and nonhomogenization of the curvature G-equation with shear flows. arXiv:2303.16304 (2023)

  19. Mitake, H., Tran, H.V., Yu, Y.: Rate of convergence in periodic homogenization of Hamilton–Jacobi equations: the convex setting. Arch. Ration. Mech. Anal. 233(2), 901–933 (2019)

    Article  MathSciNet  Google Scholar 

  20. Qian, J., Sprekeler, T., Tran, H.V., Yu, Y.: Optimal rate of convergence in periodic homogenization of viscous Hamilton–Jacobi equations. arXiv:2402.03091 [math.AP] (2024)

  21. Tran, H.V.: Hamilton–Jacobi equations: theory and applications, AMS Graduate Studies in Mathematics (2021)

  22. Tran, H.V., Yu, Y.: Optimal convergence rate for periodic homogenization of convex Hamilton–Jacobi equations. Indiana Univ. Math. J. (To appear)

  23. Tu, S.N.T.: Rate of convergence for periodic homogenization of convex Hamilton–Jacobi equations in one dimension. Asymptot. Anal. 121(2), 171–194 (2021)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank Olivier Ley, Qing Liu, Hiroyoshi Mitake, Norbert Pozar, Hung V. Tran, Yifeng Yu for helpful discussions and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiwoong Jang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of JJ was partially supported by NSF CAREER Grant DMS-1843320.

Proof of Theorem 2.1

Proof of Theorem 2.1

We prove Theorem 2.1 in this appendix. We will separate the steps into Propositions 1, 2, 3, whose statements are about the estimates of gradients, Hessians and time derivatives.

We state the short-time existence of classical solutions to (2.1). We skip the proof as known in the literature. The uniqueness follows from the standard comparison principle, for which we refer to [8]. See [1] for more general results in this direction. For the existence with gradient and Hessian estimates, we refer to [10] (in the absence of a forcing) and to [9, Appendix A] (when with a \(C^2\) forcing term).

Proposition 1

Let \(w_0\) be a globally Lipschitz function on \(\mathbb {R}^n\) with \(\Vert Dw_0\Vert _{L^{\infty }(\mathbb {R}^n)}\) \(\leqslant N_0<+\infty \). Then, there exists \(T^*=T^*(\Vert c\Vert _{C^2(\mathbb {R}^n)},N_0)>0\) such that (2.1) with \(T=T^*\) has a unique classical solution \(w=w(x,t)\). Moreover, for each \(T\in (0,T^*)\), there exist \(N=N(\Vert c\Vert _{C^2(\mathbb {R}^n)},N_0,T)>0\) and \(C=C(\Vert c\Vert _{C^2(\mathbb {R}^n)},N_0,T)\) \(>0\) such that

$$\begin{aligned} \Vert Dw\Vert _{L^{\infty }(\mathbb {R}^n\times [0,T])}\leqslant N, \end{aligned}$$

and

$$\begin{aligned} \Vert D^2w(\cdot ,t)\Vert _{L^{\infty }(\mathbb {R}^n)}\leqslant \frac{C}{\sqrt{t}} \end{aligned}$$

for \(t\in (0,T]\).

Next, we state and prove a priori time derivative estimates based on the maximum principle. See [15, Lemma 3.1].

Proposition 2

Let \(w_0\) be a globally Lipschitz function on \(\mathbb {R}^n\) with \(\Vert Dw_0\Vert _{L^{\infty }(\mathbb {R}^n)}\) \(\leqslant N_0<+\infty \). Let \(T^*=T^*(\Vert c\Vert _{C^2(\mathbb {R}^n)},N_0)>0\) be chosen such that (2.1) with \(T=T^*\) has the unique classical solution \(w=w(x,t)\). Then, for any \(\tau \in (0,T^*)\), it holds that

$$\begin{aligned} \Vert w_t\Vert _{L^{\infty }(\mathbb {R}^n\times [\tau ,T^*))} \leqslant \Vert w_t(\cdot ,\tau )\Vert _{L^{\infty }(\mathbb {R}^n)}<+\infty . \end{aligned}$$

Proof of Proposition 2

Let \(T\in (\tau ,T^*)\). Then, by Proposition 1, there exist \(N=N(\Vert c\Vert _{C^2(\mathbb {R}^n)},N_0,T)>0\) and \(C=C(\Vert c\Vert _{C^2(\mathbb {R}^n)},N_0,T)>0\) such that

$$\begin{aligned} \Vert Dw\Vert _{L^{\infty }(\mathbb {R}^n\times [0,T])}\leqslant N, \end{aligned}$$

and

$$\begin{aligned} \Vert D^2w(\cdot ,t)\Vert _{L^{\infty }(\mathbb {R}^n)}\leqslant \frac{C}{\sqrt{t}} \end{aligned}$$

for \(t\in (\tau ,T]\). Therefore, by the equation (2.1), we see that \(\Vert w_t\Vert _{L^{\infty }(\mathbb {R}^n\times [\tau ,T])}\leqslant K=K(\Vert c\Vert _{C^2(\mathbb {R}^n)},N_0,\tau ,T)\).

We aim to prove

$$\begin{aligned} \sup _{\mathbb {R}^n\times [\tau ,T]}w_t \leqslant \sup _{\mathbb {R}^n}w_t(\cdot ,\tau ). \end{aligned}$$

Suppose for the contrary that there exists \((x_0,t_0)\in \mathbb {R}^n\times (\tau ,T]\) such that

$$\begin{aligned} w_t(x_0,t_0)>\sup _{\mathbb {R}^n}w_t(\cdot ,\tau ). \end{aligned}$$

Then there would exist a number \(\lambda \in (0,1)\) such that

$$\begin{aligned} w_t(x_0,t_0)-\lambda t_0>\sup _{\mathbb {R}^n}w_t (\cdot ,\tau )-\lambda \tau . \end{aligned}$$

We run the Bernstein method now with \(\Phi (x,t):=w_t(x,t)-\lambda t\). Let \(\Phi ^*(t):=\sup _{\mathbb {R}^n}\Phi (\cdot ,t)\) for each \(t\in [\tau ,T]\). Then \(\Phi ^*(t_0)>\Phi ^*(\tau )\). Fix a sequence \(\{\varepsilon _j\}_j\) of positive numbers that converges to 0 as \(j\rightarrow \infty \). For each \(t\in [\tau ,T]\), let \(x_j(t)\) be a maximizer of \(\Phi _j(x,t)=\Phi (x,t)-\varepsilon _j|x|^2\). Then, \(\Phi (x_j(t),t)\rightarrow \Phi ^*(t),\ D\Phi (x_j(t),t)\rightarrow 0\) as \(j\rightarrow \infty \), and \(\limsup _{j\rightarrow \infty }D^2\Phi (x_j(t),t)\leqslant 0\) in the sense that \(\limsup _{j\rightarrow \infty }(D^2\Phi (x_j(t),t)v)\cdot v\leqslant 0\) for any \(v\in \mathbb {R}^n\).

Note that \(\{t\in [\tau ,T]:\Phi ^*(t)=\sup _{[\tau ,T]}\Phi ^*(\cdot )\}\) is a closed subinterval of \([\tau ,T]\) not containing \(\tau \). Consequently, there exists \(t^*\in (\tau ,T]\) such that \(\Phi ^*(t^*)=\sup _{[\tau ,T]}\Phi ^*(\cdot ),\) \(\Phi ^*(t)<\Phi ^*(t^*)\) for all \(t\in [\tau ,t^*)\), and thus that \(\liminf _{j\rightarrow \infty }\Phi _t(x_j(t^*),t^*)\geqslant 0\).

Differentiating the first line of (2.1) in t, we obtain

$$\begin{aligned} (w_t)_t-\text {tr}\{a(Dw)D^2w_t\}=\text {tr}\{a(Dw)_tD^2w\} +c\frac{Dw\cdot Dw_t}{\sqrt{1+|Dw|^2}}. \end{aligned}$$

Also, at \((x,t)\in \mathbb {R}^n\times [\tau ,T]\),

$$\begin{aligned} \text {tr}\{a(Dw)_tD^2w\}&=\text {tr}\{(D_pa(Dw)\odot Dw_t)D^2w\}\\&\leqslant \frac{4n^3}{\sqrt{1+|Dw|^2}}|Dw_t|\Vert D^2w\Vert \leqslant C(n,\Vert c\Vert _{C^2(\mathbb {R}^n)},N_0,\tau )|Dw_t| \end{aligned}$$

for some constant \(C=C(n,\Vert c\Vert _{C^2(\mathbb {R}^n)},N_0,\tau )>0\) depending only on its argument. Here, we have used the fact that \(\left| \frac{\partial }{\partial p_k}a^{ij}(p)\right| \leqslant \frac{4}{\sqrt{1+|p|^2}}\) for all \(p\in \mathbb {R}^n\). Also,

$$\begin{aligned} c\frac{Dw\cdot Dw_t}{\sqrt{1+|Dw|^2}}\leqslant \Vert c\Vert _{L^{\infty } (\mathbb {R}^n)}|Dw_t|. \end{aligned}$$

Therefore, evaluated at \((x_j(t^*),t^*)\) in the following limit,

$$\begin{aligned} 0&\leqslant \liminf _{j\rightarrow \infty }\left( \Phi _t-\text {tr}\left\{ a(Dw) D^2\Phi \right\} \right) \\&\leqslant \liminf _{j\rightarrow \infty }\left( -\lambda +(w_t)_t-\text {tr} \{a(Dw)D^2w_t\}\right) \\&\leqslant -\lambda +\liminf _{j\rightarrow \infty }C(n,\Vert c\Vert _{C^2(\mathbb {R}^n)}, N_0,\tau )|Dw_t|\\&=-\lambda , \end{aligned}$$

a contradiction.

The statement \(\inf _{\mathbb {R}^n\times [\tau ,T]}w_t \geqslant \inf _{\mathbb {R}^n}w_t(\cdot ,\tau )\) can be verified similarly, and \(T\in (\tau ,T^*)\) can be chosen arbitrarily. Therefore, we complete the proof.

\(\square \)

We state and prove a priori gradient estimates. The point of the following proposition is to remove the dependency on \(T\in (0,T^*)\) in the estimate of Proposition 1. We refer to [15, 17] regarding gradient estimates from the coercivity condition (A3).

Proposition 3

Let \(w_0\) be a globally Lipschitz function on \(\mathbb {R}^n\) with \(\Vert Dw_0\Vert _{L^{\infty }(\mathbb {R}^n)}\) \(\leqslant N_0<+\infty \). Let \(T^*=T^*(\Vert c\Vert _{C^2(\mathbb {R}^n)},N_0)>0\) be chosen such that (2.1) with \(T=T^*\) has the unique classical solution \(w=w(x,t)\). Then, for any \(\tau \in (0,T^*)\), there exists \(M=M(n,\Vert c\Vert _{L^{\infty }(\mathbb {R}^n)},\Vert w_t(\cdot ,\tau ) \Vert _{L^{\infty }(\mathbb {R}^n)},\delta )>0\) such that

$$\begin{aligned} \Vert Dw\Vert _{L^{\infty }(\mathbb {R}^n\times [\tau ,T^*))} \leqslant \max \{\Vert Dw(\cdot ,\tau )\Vert _{L^{\infty }(\mathbb {R}^n)},M\}. \end{aligned}$$

Here, \(\delta >0\) is the number appearing in the condition (A3).

Proof of Proposition 3

Let \(T\in (\tau ,T^*)\). By Proposition 1, there exists \(N=N(\Vert c\Vert _{C^2(\mathbb {R}^n)},N_0,T)>0\) such that

$$\begin{aligned} \Vert Dw\Vert _{L^{\infty }(\mathbb {R}^n\times [\tau ,T])}\leqslant N. \end{aligned}$$
(A.1)

The goal of this proof is to make this estimate independent of \(T\in (\tau ,T^*)\).

We now run the Bernstein method with \(\Phi (x,t):=z(x,t)\). Let \(\Phi ^*(t):=\sup _{\mathbb {R}^n}w(\cdot ,t)\) for \(t\in [\tau ,T]\). Let \(\{\varepsilon _j\}_j\) be a sequence of positive numbers that converges to 0 as \(j\rightarrow \infty \). For each \(t\in [\tau ,T]\), a maximizer \(\{x_j(t)\}_j\) of \(\Phi _j(x,t):=\Phi (x,t)-\varepsilon _j|x|^2\) satisfies that \(\Phi (x_j(t),t)\rightarrow \Phi ^*(t),\ D\Phi (x_j(t),t)\rightarrow 0\) as \(j\rightarrow \infty \), and that \(\limsup _{j\rightarrow \infty }D^2\Phi (x_j(t),t)\leqslant 0\). Here, we are using the estimate (A.1).

If \(\{t\in [\tau ,T]:\Phi ^*(t)=\sup _{[\tau ,T]}\Phi ^*(\cdot )\}\) contains \(\tau \), we obtain the conclusion. We assume the other case so that there exists \(t_1\in (\tau ,T]\) such that \(\Phi ^*(t)<\Phi ^*(t_1)=\sup _{[\tau ,T]}\Phi ^*(\cdot )\) for all \(t\in [\tau ,t_1)\). Then, it holds that \(\liminf _{j\rightarrow \infty }\Phi _t(x_j(t_1),t_1)\geqslant 0\).

We differentiate the first line of (2.1) in \(x_k\) and multiply by \(w_{x_k}\) and then sum over \(k=1,\cdots ,n.\) We get, as a result,

$$\begin{aligned} zz_t-z\text {tr}\{a(Dw)D^2z\}&=z\text {tr}\{(D_pa(Dw)\odot Dz)D^2w\}-\text {tr}\{(a(Dw)D^2w)^2\}\nonumber \\&\quad +zDc\cdot Dw+cDw\cdot Dz. \end{aligned}$$
(A.2)

We estimate the term \(\text {tr}\{(a(Dw)D^2w)^2\}\). Using the fact that \(Dz=z^{-1}D^2wDw\), we see that

$$\begin{aligned}&\text {tr}\{(a(Dw)D^2w)^2\}\nonumber \\&\quad =\text {tr}\{a(Dw)D^2wI_nD^2w\}-\text {tr}\{a(Dw) D^2w\frac{Dw}{z}\otimes \frac{Dw}{z}D^2w\}\nonumber \\&\quad =\text {tr}\{a(Dw)(D^2w)^2\}-\text {tr}\{a(Dw)Dz\otimes Dz\}. \end{aligned}$$
(A.3)

Recall the Cauchy-Schwarz’s inequality; for two square matrices \(\alpha ,\beta \) of the same size, we have

$$\begin{aligned} \text {tr}\{\alpha \beta ^t\}^2\leqslant \Vert \alpha \Vert ^2\Vert \beta \Vert ^2 \end{aligned}$$

Assume \(n\geqslant 2\). We put \(\alpha =(a(Dw))^{1/2}D^2w,\ \beta =(a(Dw))^{1/2}\) to obtain

$$\begin{aligned}&\text {tr}\{a(Dw)(D^2w)^2\}\nonumber \\&\quad \geqslant \frac{1}{n-1+\frac{1}{z^2}} \text {tr}\{a(Dw)D^2w\}^2\nonumber \\&\quad \geqslant \frac{1}{n-1}(w_t-cz)^2 -\frac{1}{(n-1)^2z^2}(w_t-cz)^2\nonumber \\&\quad \geqslant \frac{c^2}{n-1}z^2-\frac{2\Vert w_t (\cdot ,\tau )\Vert _{L^{\infty }(\mathbb {R}^n)} \Vert c\Vert _{L^{\infty }(\mathbb {R}^n)}}{n-1}z-C \end{aligned}$$
(A.4)

for some constant \(C=C(n,\Vert c\Vert _{L^{\infty }(\mathbb {R}^n)}, \Vert w_t(\cdot ,\tau )\Vert _{L^{\infty }(\mathbb {R}^n)})>0\). Here, we have used Proposition 2.

Note that

$$\begin{aligned} z\text {tr}\{(D_pa(Dw)\odot Dz)D^2w\} \leqslant 4n^3|Dz|\Vert D^2w\Vert _{L^{\infty }(\mathbb {R}^n \times [\tau ,T])}\leqslant C|Dz| \end{aligned}$$

for some constant \(C=C(n,\Vert c\Vert _{C^2(\mathbb {R}^n)},N_0,\tau ,T)>0\) from the Hessian estimate in Proposition 1. We also have used the fact that \(\left| \frac{\partial }{\partial p^k}a^{ij}(p)\right| \leqslant \frac{4}{\sqrt{1+|p|^2}}\) for \(p\in \mathbb {R}^n\).

From (A.2), (A.3), (A.4), we have

$$\begin{aligned}&zz_t-z\text {tr}\{a(Dw)D^2w\}\\&\quad \leqslant C(n,\Vert c\Vert _{C^2(\mathbb {R}^n)},N_0,\tau ,T)|Dz| -\left( \frac{c^2}{n-1}-|Dc|\right) z^2\\&\qquad +\frac{2\Vert w_t(\cdot ,\tau )\Vert _{L^{\infty } (\mathbb {R}^n)}\Vert c\Vert _{L^{\infty }(\mathbb {R}^n)}}{n-1}z +|Dz|^2+\Vert c\Vert _{L^{\infty }(\mathbb {R}^n)}|Dz|z+C \end{aligned}$$

for some constant \(C=C(n,\Vert c\Vert _{L^{\infty } (\mathbb {R}^n)},\Vert w_t(\cdot ,\tau )\Vert _{L^{\infty }(\mathbb {R}^n)})>0\). Evaluate at \((x_j(t_1),t_1)\) and let \(j\rightarrow \infty \) to obtain

$$\begin{aligned} 0\leqslant -\delta \Phi ^*(t_1)^2+C\Phi ^*(t_1)+C \end{aligned}$$

for some constant \(C=C(n,\Vert c\Vert _{L^{\infty }(\mathbb {R}^n)}, \Vert w_t(\cdot ,\tau )\Vert _{L^{\infty }(\mathbb {R}^n)})>0\) (taking a larger one than the previous lines if necessary) depending only on its arguments. This completes the proof when \(n\geqslant 2\). In the case of \(n=1\), the estimate can be carried out similarly. \(\square \)

Combining Propositions 1, 2, 3, we obtain the long-time existence, proved in the following.

Proof of Theorem 2.1

The uniqueness is standard [1, 8]. We prove the existence of classical solutions for all time.

Let \(T^*=T^*(\Vert c\Vert _{C^2(\mathbb {R}^n)},N_0)>0\) be chosen as in Proposition 1. Fix \(\tau _0=\frac{1}{2}T^*\). Tracking the dependency on parameters using Propositions 1, 2, 3, we see that there exists \(M=M(n,\Vert c\Vert _{C^2(\mathbb {R}^n)},N_0,\delta )>0\) such that

$$\begin{aligned} \Vert Dw\Vert _{L^{\infty }(\mathbb {R}^n\times [\tau _0,T^*))}\leqslant M. \end{aligned}$$

Let \(\tau _1=T^*-\varepsilon \in (\tau _0,T^*)\). Starting from \(w(\cdot ,\tau _1)\) at \(t=\tau _1\), seen as an initial data, we can extend the solution on time interval \([\tau _1,\tau _1+\frac{1}{(C_1+1)\sqrt{1+M^2}})\) (see the proof of Proposition 1 for this explicit expression). As \(\varepsilon >0\) can be arbitrarily small, the solution exists on time interval \([0,T_1^*)\) with \(T_1^*=T^*+\frac{1}{(C_1+1)\sqrt{1+M^2}}\). Not changing the choice \(\tau _0=\frac{1}{2}T^*\), we still have

$$\begin{aligned} \Vert Dw\Vert _{L^{\infty }(\mathbb {R}^n\times [\tau _0,T_1^*))}\leqslant M. \end{aligned}$$

with the same constant \(M=M(n,\Vert c\Vert _{C^2(\mathbb {R}^n)},N_0,\delta )>0\) by applying the proofs of Propositions 2, 3. Then, we can extend the solution on time interval \([0,T_2^*)\) with \(T_2^*=T^*+\frac{2}{(C_1+1)\sqrt{1+M^2}}\) as we just did from \([0,T^*)\) to \([0,T_1^*)\). We inductively proceed to conclude the solution exists for all time.

The estimate (2.2) is a simple consequence of Propositions 1, 2. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, J. A convergence rate of periodic homogenization for forced mean curvature flow of graphs in the laminar setting. Nonlinear Differ. Equ. Appl. 31, 36 (2024). https://doi.org/10.1007/s00030-024-00929-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-024-00929-4

Keywords

Mathematics Subject Classification

Navigation