Skip to main content

Advertisement

Log in

Rate of Convergence in Periodic Homogenization of Hamilton–Jacobi Equations: The Convex Setting

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

We study the rate of convergence of \({u^\varepsilon}\), as \({\varepsilon \to 0+}\), to u in periodic homogenization of Hamilton–Jacobi equations. Here, \({u^\varepsilon}\) and u are viscosity solutions to the oscillatory Hamilton–Jacobi equation and its effective equation

$$\left.\begin{array}{ll}{\rm (C)_\varepsilon}\qquad\begin{cases}u_t^{\varepsilon}+H\left(\frac{x}{\varepsilon}, Du^{\varepsilon}\right) = 0 \qquad & {\rm in} \, \mathbb{R}^{n} \times (0, \infty),\\ u^{\varepsilon}(x, 0) = g(x) \qquad & {\rm on} \, \mathbb{R}^{n},\end{cases}\end{array}\right.$$

and

$$\left.\begin{array}{ll}{\rm (C)} \qquad \begin{cases}u_t+\overline{H} \left(Du\right)=0 \qquad & {\rm in} \, \mathbb{R}^{n} \times (0, \infty),\\ u(x, 0) = g(x) \qquad & {\rm on} \, \mathbb{R}^{n},\end{cases}\end{array}\right.$$

respectively. We assume that the Hamiltonian HH(y, p) is coercive and convex in the p variable and is \({\mathbb{Z}^n}\)-periodic in the y variable, and the initial data g is bounded and Lipschitz continuous. Here, \({\overline{H}}\) is the effective Hamiltonian.

We prove that

  1. (i)
    $$u^{\varepsilon}(x, t) \geqq u(x, t)- C\varepsilon \quad {{\rm for all} \, (x, t)\in \mathbb{R}^{n} \times [0,\infty)},$$

    where C depends only on H and \({\|Dg\|_{L^\infty(\mathbb{R}^n)}}\) ;

  1. (ii)

    For fixed \({(x, t) \in \mathbb{R}^{n} \times (0, \infty)}\), if u is differentiable at (x, t) and \({\overline{H}}\) is twice differentiable at \({p = Du(x,t)}\), then

    $$u^\varepsilon(x, t) \leqq u(x, t) + \widetilde{C}_{p} t{\varepsilon} + C\varepsilon,$$

    provided that \({g \in C^{2}(\mathbb{R}^n)}\) with \({\|g\|_{C^{2}(\mathbb{R}^n)} < \infty}\). The constant \({\widetilde{C}_p}\) depends only on \({H, \overline{H}, p}\) and g. If g is only Lipschitz continuous, then the above inequality in (ii) is changed into \({u^{\varepsilon}(x, t) \leqq u(x, t) + C_{p} \sqrt{t\varepsilon} + C\varepsilon}\).

When n = 2 and H is positively homogeneous in p of some fixed degree \({k \geqq 1}\), utilizing the Aubry–Mather theory, we obtain the optimal convergence rate \({O(\varepsilon)}\)

$$|u^{\varepsilon}(x, t)-u(x, t) | \leqq C\varepsilon \quad {{\rm for all}\, (x, t)\in \mathbb{R}^2\times [0, \infty).}$$

Here C depends only on H and \({\|Dg\|_{L^{\infty}(\mathbb{R}^2)}}\).

When n = 1, the optimal convergence rate \({O(\varepsilon)}\) is established for any coercive and convex H.

The convergence rate turns out to have deep connections with the dynamics of the underlying Hamiltonian system and the shape of the effective Hamiltonian \({\overline{H}}\). Some related results and counter-examples are obtained as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armstrong, S.N., Cardaliaguet, P., Souganidis, P.E.: Error estimates and convergence rates for the stochastic homogenization of Hamilton-Jacobi equations. J. Am. Math. Soc. 27(2), 479–540 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, V.I.: Geometrical Methods in the Theory of Ordinary Differential Equations, Second edition, Grundlehren der mathematischen Wissenschaften, Vol. 250, Springer, 1988

  3. Bangert, V.: Mather Sets for Twist Maps and Geodesics on Tori, Dynamics Reported, Vol. 1, 1988

  4. Bangert, V.: Minimal geodesics. Ergod. Th. Dyn. Syst. 10, 263–286 (1989)

    Google Scholar 

  5. Bangert, V.: Geodesic rays, Busemann functions and monotone twist maps. Calc. Var. Partial Differ. Equ. 2(1), 49–63 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bernard, P.: The asymptotic behaviour of solutions of the forced Burgers equation on the circle. Nonlinearity 18, 101–124 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Camilli, F., Cesaroni, A., Marchi, C.: Homogenization and vanishing viscosity in fully nonlinear elliptic equations: rate of convergence estimates. Adv. Nonlinear Stud. 11(2), 405–428 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carneiro, M.J.: On minimizing measures of the action of autonomous Lagrangians. Nonlinearity 8, 1077–1085 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Capuzzo-Dolcetta, I., Ishii, H.: On the rate of convergence in homogenization of Hamilton-Jacobi equations. Indiana Univ. Math. J. 50(3), 1113–1129 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  10. Weinan, E.: Aubry-Mather theory and periodic solutions of the forced Burgers equation. Commun. Pure Appl. Math. 52(7), 811–828 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Evans, L.C.: Periodic homogenisation of certain fully nonlinear partial differential equations. Proc. R. Soc. Edinburgh Sect. A 120(3–4), 245–265 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Evans, L.C., Gomes, D.: Effective Hamiltonians and Averaging for Hamiltonian Dynamics. I. Arch. Ration. Mech. Anal. 157(1), 1–33 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Fathi, A.: Weak KAM Theorem in Lagrangian Dynamics

  14. Gomes, D.A.: Viscosity solutions of Hamilton-Jacobi equations, and asymptotics for Hamiltonian systems. Calc. Var. 14, 345–357 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hedlund, G.A.: Geodesies on a two-dimensional Riemannian manifold with periodic coefficients. Ann. Math. 33, 719–739 (1932)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lions, P.-L., Papanicolaou, G., Varadhan, S.R.S.: Homogenization of Hamilton–Jacobi Equations, unpublished work, 1987

  17. Luo, S., Yu, Y., Zhao, H.: A new approximation for effective Hamiltonians for homogenization of a class of Hamilton-Jacobi equations. Multiscale Model. Simul. 9(2), 711–734 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mitake, H., Tran, H.V.: Homogenization of weakly coupled systems of Hamilton-Jacobi equations with fast switching rates. Arch. Ration. Mech. Anal. 211(3), 733–769 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are deeply thankful to Hitoshi Ishii, who provides us invaluable comments and suggestions, which help much in vastly improving the presentation of the paper. We also would like to thank Weinan E and Jinxin Xue for helpful comments and discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung V. Tran.

Additional information

Communicated by F. Lin

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work of HM was partially supported by the JSPS Grants: KAKENHI #15K17574, #26287024, #16H03948. The work of HT is partially supported by NSF Grant DMS-1664424. The work of YY is partially supported by NSF CAREER award #1151919.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitake, H., Tran, H.V. & Yu, Y. Rate of Convergence in Periodic Homogenization of Hamilton–Jacobi Equations: The Convex Setting. Arch Rational Mech Anal 233, 901–934 (2019). https://doi.org/10.1007/s00205-019-01371-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-019-01371-y

Navigation