Skip to main content
Log in

Kelvin-Voigt equations for incompressible and nonhomogeneous fluids with anisotropic viscosity, relaxation and damping

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

In this work, we consider the nonlinear initial-boundary value problem posed by the Kelvin-Voigt equations for non-homogeneous and incompressible fluid flows with fully anisotropic diffusion, relaxation and damping. Moreover, we assume that the momentum equation is perturbed by a damping term which, depending on whether its signal is positive or negative, may account for the presence of a source or a sink within the system. In the particular case of considering this problem with a linear and isotropic relaxation term, we prove the existence of global and local weak solutions for the associated initial-boundary value problem supplemented with no-slip boundary conditions. When the damping term describes a sink, we establish the conditions for the polynomial time decay or for the exponential time decay of these solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antontsev, S.N., Diaz, J.I., Shmarev, S.: Energy Methods for Free Boundary Problems: Applications to Nonlinear PDEs and Fluid Mechanics, Progress in Nonlinear Differential Equations and their Applications 48, Birkhäuser, (2002)

  2. Antontsev, S.N., Kazhikhov, A.V., Monakhov, V.N.: Boundary Value Problems in Mechanics of Nonhomogeneous Fluids (Translation from the original Russian edition, Nauka, Novosibirsk, 1983). North-Holland, Amsterdam (1990)

    Google Scholar 

  3. Antontsev, S.N., Khompysh, K.: Generalized Kelvin-Voigt equations with p-Laplacian and source/absorption terms. J. Math. Anal. Appl. 456(1), 99–116 (2017)

    Article  MathSciNet  Google Scholar 

  4. Antontsev, S.N., de Oliveira, H.B.: Analysis of the existence for the steady Navier-Stokes equations with anisotropic diffusion. Adv. Differ. Equs. 19(5–6), 441–472 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Antontsev, S.N., de Oliveira, H.B.: Evolution problems of Navier-Stokes type with anisotropic diffusion, Revista de la Real Academia de Ciencias Exactas. Físicas y Nat. Serie A. Mat. 110(2), 729–754 (2016)

    MathSciNet  Google Scholar 

  6. Antontsev, S.N., de Oliveira, H.B., Khompysh, Kh.: Kelvin-Voight equation with p-Laplacian and damping term: Existence, uniqueness and blow-up. J. Math. Anal. Appl. 446(2), 1255–1273 (2017)

    Article  MathSciNet  Google Scholar 

  7. Antontsev, S.N., de Oliveira, H.B., Khompysh, Kh.: Generalized Kelvin-Voigt equations for nonhomogeneous and incompressible fluids. Commun. Math. Sci. 17(7), 1915–1948 (2019)

    Article  MathSciNet  Google Scholar 

  8. Antontsev, S.N., de Oliveira, H.B., Khompysh, Kh.: Existence and large time behavior for generalized Kelvin-Voigt equations governing nonhomogeneous and incompressible fluids. J. Phys.: Conf. Ser. 1268 012008 (2019)

  9. Antontsev, S.N., de Oliveira, H.B., Khompysh, K.: Kelvin-Voigt equations perturbed by anisotropic relaxation, diffusion and damping. J. Math. Anal. Appl. 473, 11122–1154 (2019)

    Article  MathSciNet  Google Scholar 

  10. Antontsev, S.N., de Oliveira, H.B., Khompysh, Kh.: Kelvin-Voigt equations with anisotropic diffusion, relaxation, and damping: blow-up and large time behavior. Asymptot. Anal. 121(2), 125–157 (2021)

    MathSciNet  MATH  Google Scholar 

  11. Antontsev, S.N., de Oliveira, H.B., Khompysh, Kh.: Regularity and uniqueness of Kelvin-Voigt models for nonhomogeneous and incompressible fluids . J. Phys.: Conf. Ser. 1666 012003, (2020) https://doi.org/10.1088/1742-6596/1666/1/012003

  12. Antontsev, S.N., de Oliveira, H.B., Khompysh, Kh.: The classical Kelvin-Voigt problem for nonhomogeneous and incompressible fluids: existence, uniqueness and regularity. Nonlinearity. (accepted)

  13. Bogovskiǐ, M.E., Solutions of some problems of vector analysis, associated with the operators div and grad (Russian). Theory of cubature formulas and the application of functional analysis to problems of mathematical physics, 5–40, 149. Trudy Sem. S. L. Soboleva, no. 1,: Akad, p. 1980. Otdel., Inst. Mat., Novosibirsk, Nauk SSSR Sibirsk (1980)

  14. Fuchs, M.: On stationary incompressible Norton fluids and some extensions of Korn’s inequality. Z. Anal. Anwendungen 13(2), 191–197 (1994)

    Article  MathSciNet  Google Scholar 

  15. Fragala, I., Gazzola, F., Kawohl, B.: Existence and nonexistence results for anisotropic quasilinear elliptic equations. Ann. Inst. H. Poincare Anal. Non Lineaire 21(5), 715–734 (2004)

    Article  MathSciNet  Google Scholar 

  16. Galdi, G.P.: An introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems. Springer, New York (2011)

  17. Kondratiev, V.A., Oleinik, O.A.: On Korn’s inequalities, C. R. Acad. Sci. Paris - Serie I(308), 483–487 (1989)

    MathSciNet  MATH  Google Scholar 

  18. Ladyzhenskaya, O.A.: New equations for the description of motion of viscous incompressible fluids and solvability in the large of boundary value problem for them. Proc. Steklov Inst. Math. 102, 95–118 (1967)

    Google Scholar 

  19. Ladyzenskaya, O.A., Solonnikov, V.A.: Unique solvability of an initial-and boundary-value problem for viscous incompressible nonhomogeneous fluids, Translated from the Russian in. J. Soviet Math. 9(5), 697–749 (1978)

    Article  Google Scholar 

  20. Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Paris (1969)

  21. Lions, J.-L.: Mathematical Topics in Fluid Mechanics, Volume 1: Incompressible Models, Oxford Lecture Series in Mathematics and its Applications, 3, Clarendon Press, Oxford, (1996)

  22. Malek, J., Nečas, J., Rokyta, M., Ru̇žička, M.: Weak and Measure-Valued Solutions to Evolutionary PDEs. Applied Mathematics and Mathematical Computation, 13, Chapman & Hall, London, (1996)

  23. Mosolov, P.P., Mjasnikov, V.P.: A proof of Korn’s inequality (Russian). Dokl. Akad. Nauk SSSR 201, 36–39 (1971)

    MathSciNet  Google Scholar 

  24. de Oliveira, H.B.: Generalized Navier-Stokes equations with nonlinear anisotropic viscosity. Anal. Appl. 17(6), 977–1003 (2019)

    Article  MathSciNet  Google Scholar 

  25. Oskolkov, A.P.: The uniqueness and solvability in the large of boundary value problems for the equations of motion of aqueous solutions of polymers. (Russian)

  26. Oskolkov, A.P.: On the theory of unsteady flows of Kelvin-Voigt fluids, Translated from the Russian in. J. Math. Sci. 28(5), 751–758 (1985)

    Article  Google Scholar 

  27. Pileckas, K.: On spaces of solenoidal vectors. Trudy Mat. Inst. Steklov 159, 137–149 (1983). English Transl.: Proc. Steklov Math Inst. 159, 141–154 (1984)

  28. Porzio, M.M.: \({\rm L}^{\infty }\)-regularity for degenerate and singular anisotropic parabolic equations. Boll. Un. Mat. Ital. A. 11(7), 697–707 (1997)

    MathSciNet  MATH  Google Scholar 

  29. Rakosnik, J.: Some remarks to anisotropic Sobolev spaces. II, Beitrage Anal. 15, 127–140 (1980)

    MathSciNet  MATH  Google Scholar 

  30. Troisi, M.: Teoremi di inclusione per spazi di Sobolev non isotropi. Ricerche Mat. 18, 3–24 (1969)

    MathSciNet  MATH  Google Scholar 

  31. Zvyagin, V.G., Turbin, M.V.: Investigation of initial-boundary value problems for mathematical models of the motion of Kelvin-Voigt fluids, Translated from the Russian in. J. Math. Sci. 168(2), 157–308 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The first author was supported by the Lavrenty’ev Institute of Hydrodynamics of the Siberian Branch RAS (project no. III.22.4.2, Analysis of mathematical models of continua with singularities, discontinuities and intrinsic inhomogeneities), Novosibirsk, Russia. Both first and second authors were partially supported by the Project UID/MAT/04561/2019 of the Portuguese Foundation for Science and Technology (FCT), Portugal. The third author was supported by the Grant no. AP08052425 of the Ministry of Science and Education of the Republic of Kazakhstan (MES RK), Kazakhstan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kh. Khompysh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antontsev, S.N., de Oliveira, H.B. & Khompysh, K. Kelvin-Voigt equations for incompressible and nonhomogeneous fluids with anisotropic viscosity, relaxation and damping. Nonlinear Differ. Equ. Appl. 29, 60 (2022). https://doi.org/10.1007/s00030-022-00794-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-022-00794-z

Keywords

Mathematics Subject Classification

Navigation