Skip to main content
Log in

Theory of nonstationary flows of Kelvin-Voigt fluids

  • Published:
Journal of Soviet Mathematics Aims and scope Submit manuscript

Abstract

One proves the global unique solvability in class\(W_\infty ^1 (0,T;C^{2,d} (\bar \Omega ) \cap H(\Omega ))\) of the initial-boundary-value problem for the quasilinear system

$$\frac{{\partial \vec \upsilon }}{{\partial t}} + \upsilon _k \frac{{\partial \vec \upsilon }}{{\partial x_k }} - \mu _1 \frac{{\partial \Delta \vec \upsilon }}{{\partial t}} - \int\limits_0^t {K(t - \tau )\Delta \vec \upsilon (\tau )d\tau + grad p = \vec f,di\upsilon \bar \upsilon = 0,\upsilon , > 0.}$$

This system described the nonstationary flows of the elastic-viscous Kelvin-Voigt fluids with defining relation

$$\left( {1 + \sum\limits_{\ell = 1}^L {\lambda _\ell } \frac{{\partial ^\ell }}{{\partial t^\ell }}} \right)\sigma = 2\left( {v + \sum\limits_{m = 1}^{L + 1} {\user2{\ae }_m } \frac{{\partial ^m }}{{\partial t^m }}} \right)D,L = 0,1,2,...;\lambda _L ,\user2{\ae }_{L + 1} > 0.$$

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. O. A. Ladyzhenskaya, Mathematical Theory of Viscous Incompressible Flow, Gordan and Breach (1969).

  2. W. L. Wilkinson, Non-Newtonian Fluids, Pergamon Press, New York (1960).

    Google Scholar 

  3. C. Truesdell, A First Course in Rational Continuum Mechanics, Academic Press, New York (1977).

    Google Scholar 

  4. G. V. Vinogradov and A. Ya. Malkin, The Rheology of Polymers [in Russian], Khimiya, Moscow (1977).

    Google Scholar 

  5. G. Astarita and G. Marrucci, Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill, London (1974).

    Google Scholar 

  6. D. R. Bland, The Theory of Linear Viscoelasticity, Pergamon Press, Oxford (1960).

    Google Scholar 

  7. G. Duvaut and J.-L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin (1976).

    Google Scholar 

  8. R. Betchov and W. O. Criminale, Jr., Stability of Parallel Flows, Academic Press, New York (1967).

    Google Scholar 

  9. J. C. Maxwell, Phil. Trans. R. Soc.,49, 157 (1867).

    Google Scholar 

  10. J. G. Oldroyd, Second-Order Effects in Elasticity, Plasticity, and Fluid Dynamics, Oxford (1963).

  11. V. A. Solonnikov, “On general boundary-value problems for systems which are elliptic in the sense of Douglis-Nirenberg,” Part I: Izv. Akad. Nauk SSSR, Ser. Mat.,28, 665–706 (1964); Part II: Tr. Mat. Inst. Akad. Nauk SSSR,92, 233–297 (1966).

    Google Scholar 

  12. A. P. Oskolkov, “On certain nonstationary linear and quasilinear systems occurring in the study of the motion of viscous fluids,” J. Sov. Math.,10, No. 2 (1978).

  13. W. von Wahl, “Über das Modell einer nicht-Newtonschen Flüssigkeit mit Relaxationseigenschaften,” Manuscripta Math.,22, No. 2, 131–135 (1977).

    Article  Google Scholar 

  14. A. P. Oskolkov, On nonstationary flows of viscoelastic fluids. Preprint LOMI P-2-80, Leningrad (1980).

  15. A. P. Oskolkov, “On certain model nonstationary systems in the theory of non-Newtonian Fluids,” Part III: J. Soc. Math.,21, No. 5 (1983); Part IV:25, No. 1 (1984).

Download references

Authors

Additional information

Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im. V. A. Steklova AN SSSR, Vol. 115, pp. 191–202, 1982.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oskolkov, A.P. Theory of nonstationary flows of Kelvin-Voigt fluids. J Math Sci 28, 751–758 (1985). https://doi.org/10.1007/BF02112340

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02112340

Keywords

Navigation