Skip to main content
Log in

Fixed analytic radius lower bound for the dissipative KdV equation on the real line

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

We study the global analyticity for the dissipative KdV equation with an analytic initial data on the real line. We show that the analytic radius of the solution has a fixed positive lower bound uniformly for all time. This reflects the dissipative effect to some extent, since the best known analytic radius of the KdV equation may decay polynomially as time goes to infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahn, J., Kim, J., Seo, I.: On the radius of spatial analyticity for defocusing nonlinear Schrödinger equations. Discrete Contin. Dyn. Syst. 40(1), 423–439 (2020)

    Article  MathSciNet  Google Scholar 

  2. Ahn, J., Kim, J., Seo, I.: Lower bounds on the radius of spatial analyticity for the Kawahara equation. Anal. Math. Phys. 11(1), 28 (2021)

    Article  MathSciNet  Google Scholar 

  3. Bona, J.L., Grujić, Z.: Spatial analyticity properties of nonlinear waves. Math. Mod. Meth. Appl. S. 13, 345–360 (2003)

    Article  MathSciNet  Google Scholar 

  4. Bona, J.L., Grujić, Z., Kalisch, H.: Algebraic lower bounds for the uniform radius of spatial analyticity for the generalized KdV equation. Ann. I. H. Poincaré-AN 22, 783–797 (2005)

    Article  MathSciNet  Google Scholar 

  5. Bona, J.L., Grujić, Z., Kalisch, H.: Global solutions of the derivative Schrödinger equation in a class of functions analytic in a strip. J. Differ. Equations 229, 186–203 (2006)

    Article  Google Scholar 

  6. Bona, J.L., Grujić, Z., Kalisch, H.: A KdV-type Boussinesq system: From the energy level to analytic spaces. Discrete Contin. Dyn. Syst. 26, 1121–1139 (2010)

    Article  MathSciNet  Google Scholar 

  7. Cappiello, M., Ancona, P.D.’, Nicola, F.: On the radius of spatial analyticity for semilinear symmetric hyperbolic systems. J. Differ. Equations 256, 2603–2618 (2014)

    Article  MathSciNet  Google Scholar 

  8. Chen, W., Li, J., Miao, C.: On the well-posedness of the Cauchy problem for dissipative modified Korteweg-de Vries equations. Differential Integral Equations 20(11), 1285–1301 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Colliander, J., Keel, M., Staffilani, G., et al.: Sharp global well-posedness for KdV and modified KdV on \({\mathbb{R}}\) and \({\mathbb{T}}\). J. Amer. Math. Soc. 16, 705–749 (2003)

    Article  MathSciNet  Google Scholar 

  10. Gérard, P., Guo, Y., Titi, E.S.: On the radius of analyticity of solutions to the cubic Szegő equation. Annales De Linstitut Henri Poincaré 32, 97–108 (2015)

    Article  Google Scholar 

  11. Goubet, O.: Analyticity of the global attractor for damped forced periodic Korteweg-de Vries equation. J. Differential Equations 264(4), 3052–3066 (2018)

    Article  MathSciNet  Google Scholar 

  12. Goubet, O.: Gevrey regularity of the global attractor for damped forced KdV equation on the real line. J. Math. Study 51(3), 294–308 (2018)

    Article  MathSciNet  Google Scholar 

  13. Gorsky, J., Himonas, A.A., Holliman, C., et al.: The Cauchy problem of a periodic higher order KdV equation in analytic Gevrey spaces. J. Math. Anal. Appl. 405, 349–361 (2013)

    Article  MathSciNet  Google Scholar 

  14. Grujić, Z., Kalisch, H.: Local well-posedness of the generalized Korteweg-de Vries equation in spaces of analytic functions. Differ. Integral Equ. 15, 1325–1334 (2002)

    MathSciNet  MATH  Google Scholar 

  15. Guo, Y., Titi, E.S.: Persistency of analyticity for nonlinear wave equations: an energy-like approach. Bull. Inst. Math. Acad. Sin. (N.S.) 8, 445–479 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Guo, Y., Wang, M.: Regular attractor for damped KdV-Burgers equations on \({{\mathbb{R}}} \). Math. Methods Appl. Sci. 40(18), 7453–7469 (2017)

    Article  MathSciNet  Google Scholar 

  17. Guo, Y., Wang, M., Tang, Y.: Higher regularity of global attractors of a weakly dissipative fractional Korteweg de Vries equation. J. Math. Phys. 56(12), 122702, 15 (2015)

    Article  MathSciNet  Google Scholar 

  18. Hannah, H., Himonas, A., Petronilho, G.: Gevrey regularity of the periodic gKdV equation. J. Differ. Equations 250, 2581–2600 (2011)

    Article  MathSciNet  Google Scholar 

  19. Himonas, A., Kalisch, H., Selberg, S.: On persistence of spatial analyticity for the dispersion-generalized periodic KdV equation. Nonlinear Anal-Real 38, 35–48 (2017)

    Article  MathSciNet  Google Scholar 

  20. Himonas, A., Petronilho, G.: Analytic well-posedness of periodic gKdV. J. Differ. Equations 253, 3101–3112 (2012)

    Article  MathSciNet  Google Scholar 

  21. Himonas, A.A., Petronilho, G.: Analyticity in partial differential equations. Complex Analysis and Its Synergies 6(2), 1–16 (2020)

    Article  MathSciNet  Google Scholar 

  22. Huang, J., Wang, M.: New lower bounds on the radius of spatial analyticity for the KdV equation. J. Differ. Equations 266(9), 5278–5317 (2019)

    Article  MathSciNet  Google Scholar 

  23. Kappeler, T., Pöschel, J.: On the periodic KdV equation in weighted Sobolev spaces. Ann. Inst. H. Poincaré Anal. Non Linéaire 26, 841–853 (2009)

    Article  MathSciNet  Google Scholar 

  24. Katznelson, Y.: An introduction to harmonic analysis, Cambridge University Press, 3rd Edition, (2004)

  25. Kenig, C.E., Ponce, G., Vega, L.: The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices. Duke Math. J. 71(1), 1–21 (1993)

    Article  MathSciNet  Google Scholar 

  26. Kiselev, A., Nazarov, F., Shterenberg, R.: Blow up and regularity for fractal Burgers equation. Dyn. Partial Differ. Equ. 5(3), 211–240 (2008)

    Article  MathSciNet  Google Scholar 

  27. Li, Q.: Local well-posedness for the periodic Korteweg-de Vries equation in analytic Gevrey classes, Commun. Pure. Appl. Anal. 11, 1097–1109 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Molinet, L., Ribaud, F.: The Cauchy problem for dissipative Kortewig-de Vries equations in Sobolev spaces of negative order. Indiana Univ. Math. J. 50, 1745–1776 (2001)

    Article  MathSciNet  Google Scholar 

  29. Molinet, L., Ribaud, F.: On the low regularity of the Korteweg-de Vries-Burgers equation. Int. Math. Res. Not. 37, 1979–2005 (2002)

    Article  MathSciNet  Google Scholar 

  30. Ott, E., Sudan, N.: Damping of solitary waves. Phys. Fluids 13, 1432–1434 (1970)

    Article  Google Scholar 

  31. Panizzi, S.: On the domain of analyticity of solutions to semilinear Klein-Gordon equations. Nonlinear Anal. 75, 2841–2850 (2012)

    Article  MathSciNet  Google Scholar 

  32. Schonbek, M.: Large time behaviour of solutions to the Navier-Stokes equations in \(H^m\) spaces. Comm. Partial Differential Equations 20, 103–117 (1995)

    Article  MathSciNet  Google Scholar 

  33. Selberg, S., da Silva, D.O.: Lower bounds on the radius of spatial analyticity for the KdV equation. Annales Henri Poincaré 18, 1009–1023 (2017)

    Article  MathSciNet  Google Scholar 

  34. Selberg, S., Tesfahun, A.: On the radius of spatial analyticity for the 1d Dirac-Klein-Gordon equations. J. Differ. Equations 259, 4732–4744 (2015)

    Article  MathSciNet  Google Scholar 

  35. Selberg, S., Tesfahun, A.: On the radius of spatial analyticity for the quartic generalized KdV equation. Annales Henri Poincaré 18, 3553–3564 (2017)

    Article  MathSciNet  Google Scholar 

  36. Tesfahun, A.: On the radius of spatial analyticity for cubic nonlinear Schrödinger equations. J. Differ. Equations 263, 7496–7512 (2017)

    Article  Google Scholar 

  37. Tesfahun, A.: Asymptotic lower bound for the radius of spatial analtyicity to solutions of KdV equation. Commun. Contemp. Math. 21(8), 1850061 (2019). https://doi.org/10.1142/S021919971850061X

    Article  MathSciNet  MATH  Google Scholar 

  38. Vento, S.: Global well-posedness for dissipative Korteweg-de Vries equations. Funkcial. Ekvac. 54(1), 119–138 (2011)

    Article  MathSciNet  Google Scholar 

  39. Wang, M.: Nondecreasing analytic radius for the KdV equation with a weakly damping. Nonlinear Analysis 215, 112653 (2022)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China under grant No.12171442, and the Fundamental Research Funds for the Central Universities, China University of Geosciences(Wuhan) under grant No.CUGSX01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Analyticity in the case \(\alpha \ge 1\)

Appendix: Analyticity in the case \(\alpha \ge 1\)

In [26], the spatial analyticity is proved for the critical Burgers equation on the circle \({\mathbb {T}}\). Now we adapt the approach to show the spatial analyticity of the dissipative KdV equation, with \(\alpha \ge 1\), on the real line. According to [28], for every data \(u_0\in L^2({\mathbb {R}})\), the dissipative KdV equation (1.4) has a global solution

$$\begin{aligned} u\in C([0,\infty );L^2({\mathbb {R}}))\bigcap C([0,\infty ); H^\infty _x({\mathbb {R}})). \end{aligned}$$

The solution is in fact uniformly analytic with respect to the spatial variable. The precise statement is as follows.

Proposition 4.1

Let \(\alpha \ge 1\) and \(u_0\in L^2({\mathbb {R}})\). Then there exists a constant \(\sigma _0, C>0\) depending only on \(\Vert u_0\Vert _{L^2({\mathbb {R}})}\) so that when u solves (1.4)

$$\begin{aligned} \Vert u(t)\Vert _{G^{\sigma _0}}\le C, \quad \text{ for } \text{ all } t\ge 1. \end{aligned}$$

Proof

The following calculation is carried out formally, which can be rigorous by a Galerkin approximation as in [26].

Acting the operator \(e^{\frac{t}{2}|D_x|}\) on both sides of (1.4) we obtain

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} \Big ( e^{\frac{t}{2}|D_x|}u \Big )+e^{\frac{t}{2}|D_x|}u_{xxx}+e^{\frac{t}{2}|D_x|}\big ( uu_x\big ) + (|D_x|^{\alpha }-\frac{1}{2}|D_x|)e^{\frac{t}{2}|D_x|}u=0. \end{aligned}$$
(4.1)

Taking the inner product of (4.1) with \((1-\partial _x^4)e^{\frac{t}{2}|D_x|}u\), and using the cancelation property

$$\begin{aligned} \Big (e^{\frac{t}{2}|D_x|}u_{xxx}+e^{\frac{t}{2}|D_x|}ue^{\frac{t}{2}|D_x|}u_x,(1-\partial _x^4)e^{\frac{t}{2}|D_x|}u\Big )=0 \end{aligned}$$

we infer that

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t} Z&=2\Big (e^{\frac{t}{2}|D_x|}ue^{\frac{t}{2}|D_x|}u_x-e^{\frac{t}{2}|D_x|}\big ( uu_x\big ), (1-\partial _x^4)e^{\frac{t}{2}|D_x|}u\Big )\nonumber \\&\quad + 2\Big ((\frac{1}{2}|D_x|-|D_x|^{\alpha })e^{\frac{t}{2}|D_x|}u, (1-\partial _x^4)e^{\frac{t}{2}|D_x|}u\Big )\nonumber \\&:=I_1+I_2, \end{aligned}$$
(4.2)

where \(Z=\int _{\mathbb {R}}|e^{\frac{t}{2}|D_x|}u|^2+|\partial _x^2e^{\frac{t}{2}|D_x|}u|^2\mathrm{d}x\).

Now we are going to estimate \(I_1, I_2\) separately. For \(I_1\), using Parseval identity we can rewrite

$$\begin{aligned} I_1 = \int _{\xi +\xi _1+\xi _2=0}i\xi (1+\xi ^4)e^{\frac{t}{2}|\xi |}\Big (e^{\frac{t}{2}|\xi _1|}e^{\frac{t}{2}|\xi _2|}-e^{\frac{t}{2}|\xi |} \Big ){\widehat{u}}(\xi ){\widehat{u}}(\xi _1){\widehat{u}}(\xi _2)\mathrm{d}\xi _1 \mathrm{d}\xi . \end{aligned}$$
(4.3)

One can check that, see [35, Lemma 12], if \(\xi +\xi _1+\xi _2=0\), then

$$\begin{aligned} 0\le e^{\frac{t}{2}|\xi _1|}e^{\frac{t}{2}|\xi _2|}-e^{\frac{t}{2}|\xi |}\le t\min \{|\xi _1|,|\xi _2|\}e^{\frac{t}{2}|\xi _1|}e^{\frac{t}{2}|\xi _2|}. \end{aligned}$$

Plugging this into (4.3), using the symmetry of \(|\xi _1|\) and \(|\xi _2|\), we find

$$\begin{aligned} I_1 \le 2\int _{\xi +\xi _1+\xi _2=0, |\xi _1|\le |\xi _2|} t|\xi _1\Vert \xi |(1+\xi ^4)e^{\frac{t}{2}|\xi |}|{\widehat{u}}(\xi ) |e^{\frac{t}{2}|\xi _1|}|{\widehat{u}}(\xi _1)|e^{\frac{t}{2}|\xi _2|}|{\widehat{u}}(\xi _2)|\mathrm{d}\xi _1 \mathrm{d}\xi . \end{aligned}$$
(4.4)

Noting \(|\xi |\le |\xi _1|+|\xi _2|\le 2|\xi _2|\) in the integration, we deduce from (4.4) that

$$\begin{aligned} I_1&\lesssim \int _{\xi +\xi _1+\xi _2=0 \atop |\xi _1|\le |\xi _2|} t|\xi _1\Vert \xi _2|^{\frac{1}{2}}(1+\xi _2^2)|\xi |^{\frac{1}{2}}(1+\xi ^2)e^{\frac{t}{2}|\xi |}|{\widehat{u}}(\xi ) |e^{\frac{t}{2}|\xi _1|}|{\widehat{u}}(\xi _1)|e^{\frac{t}{2}|\xi _2|}|{\widehat{u}}(\xi _2)|\mathrm{d}\xi _1 \mathrm{d}\xi \nonumber \\&\lesssim t\int _{{\mathbb {R}}} |\xi _1|e^{\frac{t}{2}|\xi _1|}|{\widehat{u}}(\xi _1)|\mathrm{d}\xi _1\int _{{\mathbb {R}}} |\xi |(1+\xi ^2)^2e^{t|\xi |}|{\widehat{u}}(\xi )|\mathrm{d}\xi \nonumber \\&\lesssim t Z^{\frac{1}{2}} \int _{{\mathbb {R}}} |\xi |(1+\xi ^4)e^{t|\xi |}|{\widehat{u}}(\xi )|^2\mathrm{d}\xi , \end{aligned}$$
(4.5)

where in the last two steps we used the Cauchy-Schwarz inequality.

For \(I_2\), by Parseval and split the integral \(\int _{\mathbb {R}}=\int _{|\xi |\le 1}+\int _{|\xi |>1}\), we have

$$\begin{aligned} I_2&=\int _{\mathbb {R}}(|\xi |-2|\xi |^{\alpha })(1+\xi ^4)e^{t|\xi |}|{\widehat{u}}(\xi )|^2\mathrm{d}\xi \nonumber \\&\le 2e^t\Vert u(t)\Vert ^2_{L^2({\mathbb {R}})}-\int _{\mathbb {R}}|\xi |(1+\xi ^4)e^{t|\xi |}|{\widehat{u}}(\xi )|^2\mathrm{d}\xi . \end{aligned}$$
(4.6)

It follows from (4.2), (4.5)-(4.6) that, noting \(\Vert u(t)\Vert _{L^2({\mathbb {R}})}\le \Vert u_0\Vert _{L^2({\mathbb {R}})}\),

$$\begin{aligned} \frac{\mathrm{d}}{\mathrm{d}t}Z\le 2e^t\Vert u_0\Vert ^2_{L^2({\mathbb {R}})}+(Ct Z^{\frac{1}{2}}-1)\int _{\mathbb {R}}|\xi |(1+\xi ^4)e^{t|\xi |}|{\widehat{u}}(\xi )|^2\mathrm{d}\xi . \end{aligned}$$
(4.7)

We analyze (4.7) as follows. If for some \(t_0\in (0,1]\),

$$\begin{aligned} Ct Z^{\frac{1}{2}}-1\le 0, \quad t\in [0,t_0], \end{aligned}$$
(4.8)

then we deduce from (4.7) that

$$\begin{aligned} Z(t)\le 2e\Vert u_0\Vert ^2_{L^2({\mathbb {R}})}+Z(0), \quad t\in [0,t_0]. \end{aligned}$$
(4.9)

Note that \(Z(0)\lesssim \Vert u_0\Vert _{H^2({\mathbb {R}})}\), if we take

$$\begin{aligned} t_0=\frac{1}{1+C\sqrt{2e\Vert u_0\Vert ^2_{L^2({\mathbb {R}})}+Z(0)}} \end{aligned}$$

then (4.8)-(4.9) holds. In particular, this implies that if \(u_0\in H^2({\mathbb {R}})\), then we have \(u(t_0)\in G^{t_0}\) for some \(t_0>0\).

Since the dissipative KdV equation has a smoothing effect, namely the solution \(u(t)\in H^2({\mathbb {R}})\) for every \(t>0\), we conclude the analyticity of u(t) for all \(t\ge 1\). This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Wang, M. Fixed analytic radius lower bound for the dissipative KdV equation on the real line. Nonlinear Differ. Equ. Appl. 29, 57 (2022). https://doi.org/10.1007/s00030-022-00789-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-022-00789-w

Keywords

Mathematics Subject Classification

Navigation