Skip to main content
Log in

Small-density solutions in Keller–Segel systems involving rapidly decaying diffusivities

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

In a smoothly bounded domain \(\Omega \subset \mathbb {R}^n\), \(n\ge 1\), the quasilinear Keller–Segel system

is considered under homogeneous no-flux boundary conditions. It is firstly shown that if D and S, besides belonging to \(C^2([0,\infty ))\) with \(S(0)=0\), merely satisfy

then for all \(K>0\) there exists \(\varepsilon _\star (K)\in (0,\frac{R}{2})\) such that whenever \(0\le u_0\in W^{1,\infty }(\Omega )\) and \(0\le v_0\in W^{1,\infty }(\Omega )\) satisfy

a corresponding initial value problem for (\(\star \)) admits a global bounded classical solution with \((u,v)|_{t=0}=(u_0,v_0)\). Secondly, a more restrictive condition on the initial data, inter alia requiring appropriate smallness of both \(\Vert u_0\Vert _{L^\infty (\Omega )}\) and \(\Vert v_0\Vert _{W^{1,\infty }(\Omega )}\), is identified as sufficient to ensure exponential stabilization of the correspondingly obtained solution toward the equilibrium \((\frac{1}{|\Omega |} \int _\Omega u_0, \frac{1}{|\Omega |}\int _\Omega u_0)\). As a technical ingredient of crucial importance for the derivation of explicit pointwise bounds for the respective first solution components, the analysis relies on a refinement of a Moser-type iterative argument which, formulated here in a general context of parabolic inequalities, provides some quantitative information about the dependence of \(L^\infty \) estimates on bounds on the initial data and \(L^1\) bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cao, X.: Global bounded solutions of the higher-dimensional Keller–Segel system under smallness conditions in optimal spaces. Discrete Contin. Dyn. Syst. Ser. A 35, 1891–1904 (2015)

    Article  MathSciNet  Google Scholar 

  2. Cieślak, T., Stinner, C.: Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller–Segel system in higher dimensions. J. Differ. Equ. 252(10), 5832–5851 (2012)

    Article  MathSciNet  Google Scholar 

  3. Cieślak, T., Stinner, C.: New critical exponents in a fully parabolic quasilinear Keller–Segel system and applications to volume filling models. J. Differ. Equ. 258(6), 2080–2113 (2015)

    Article  MathSciNet  Google Scholar 

  4. Cieślak, T., Winkler, M.: Global bounded solutions in a two-dimensional quasilinear Keller–Segel system with exponentially decaying diffusivity and subcritical sensitivity. Nonlinear Anal. Real World Appl. 35, 1–19 (2017)

    Article  MathSciNet  Google Scholar 

  5. Cieślak, T., Winkler, M.: Stabilization in a higher-dimensional quasilinear Keller–Segel system with exponentially decaying diffusivity and subcritical sensitivity. Nonlinear Anal. 159, 129–144 (2017)

    Article  MathSciNet  Google Scholar 

  6. Ding, M., Zhao, X.: \({L}^\sigma \)-measure criteria for boundedness in a quasilinear parabolic-parabolic Keller–Segel system with supercritical sensitivity. Discrete Contin. Dyn. Syst. Ser. B 24, 5297–5315 (2019)

    MathSciNet  MATH  Google Scholar 

  7. Herrero, M., Velázquez, J.: A blow-up mechanism for a chemotaxis model. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 24(4), 633–683 (1997)

    MathSciNet  MATH  Google Scholar 

  8. Hillen, T., Painter, K.J.: A user’s guide to PDE models for chemotaxis. J. Math. Biol. 58, 183–217 (2009)

    Article  MathSciNet  Google Scholar 

  9. Horstmann, D., Winkler, M.: Boundedness vs. blow-up in a chemotaxis system. J. Differ. Equ. 215, 52–107 (2005)

    Article  MathSciNet  Google Scholar 

  10. Ishida, S., Seki, K., Yokota, T.: Boundedness in quasilinear Keller–Segel systems of parabolic–parabolic type on non-convex bounded domains. J. Differ. Equ. 256, 2993–3010 (2014)

    Article  MathSciNet  Google Scholar 

  11. Lankeit, J.: Locally bounded global solutions to a chemotaxis consumption model with singular sensitivity and nonlinear diffusion. J. Differ. Equ. 262, 4052–4084 (2017)

    Article  MathSciNet  Google Scholar 

  12. Ladyzenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasi-Linear Equations of Parabolic Type. Am. Math. Soc. Transl., vol. 23, Providence, RI (1968)

  13. Nagai, T., Senba, T., Yoshida, K.: Application of the Trudinger–Moser inequality to a parabolic system of chemotaxis. Funkcial. Ekvac. 40, 411–433 (1997)

    MathSciNet  MATH  Google Scholar 

  14. Osaki, K., Yagi, A.: Finite dimensional attractor for one-dimensional Keller–Segel equations. Funkcial. Ekvac. 44, 441–469 (2001)

    MathSciNet  MATH  Google Scholar 

  15. Painter, K.J., Hillen, T.: Volume-filling and quorum-sensing in models for chemosensitive movement. Can. Appl. Math. Q. 10, 501–543 (2002)

    MathSciNet  MATH  Google Scholar 

  16. Porzio, M., Vespri, V.: Holder estimates for local solutions of some doubly nonlinear degenerate parabolic equations. J. Differ. Equ. 103, 146–178 (1993)

    Article  Google Scholar 

  17. Senba, T., Suzuki, T.: A quasi-linear parabolic system of chemotaxis. Abstr. Appl. Anal. Art. ID 23061 (2006)

  18. Tao, Y., Winkler, M.: Boundedness in a quasilinear parabolic-parabolic Keller–Segel system with subcritical sensitivity. J. Differ. Equ. 252, 692–715 (2012)

    Article  MathSciNet  Google Scholar 

  19. Wang, Z.A., Winkler, M., Wrzosek, D.: Global regularity vs. infinite-time singularity formation in a chemotaxis model with volume filling effect and degenerate diffusion. SIAM J. Math. Anal. 44, 3502–3525 (2012)

    Article  MathSciNet  Google Scholar 

  20. Wang, Z.A., Winkler, M., Wrzosek, D.: Singularity formation in chemotaxis systems with volume-filling effect. Nonlinearity 24, 3279–3297 (2011)

    Article  MathSciNet  Google Scholar 

  21. Winkler, M.: Does a ‘volume-filling effect’ always prevent chemotactic collapse? Math. Methods Appl. Sci. 33, 12–24 (2010)

    Article  MathSciNet  Google Scholar 

  22. Winkler, M.: Finite-time blow-up in the higher-dimensional parabolic–parabolic Keller–Segel system. J. Math. Pures Appl. 100, 748–767 (2013)

    Article  MathSciNet  Google Scholar 

  23. Winkler, M.: Global existence and slow grow-up in a quasilinear Keller–Segel system with exponentially decaying diffusivity. Nonlinearity 30, 735–764 (2017)

    Article  MathSciNet  Google Scholar 

  24. Winkler, M.: Global classical solvability and generic infinite-time blow-up in quasilinear Keller–Segel systems with bounded sensitivities. J. Differ. Equ. 266, 8034–8066 (2019)

    Article  MathSciNet  Google Scholar 

  25. Winkler, M.: A unifying approach toward boundedness in Keller–Segel type cross-diffusion systems via conditional \(L^\infty \) estimates for taxis gradients. Preprint

  26. Wrzosek, D.: Volume filling effect in modelling chemotaxis. Math. Model. Nat. Phenom. 5, 123–147 (2010)

    Article  MathSciNet  Google Scholar 

  27. Wrzosek, D.: Model of chemotaxis with threshold density and singular diffusion. Nonlinear Anal. 73, 338–349 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The second author acknowledges support of the Deutsche Forschungsgemeinschaft in the context of the project Emergence of structures and advantages in cross-diffusion systems (Project No. 411007140, GZ: WI 3707/5-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengyao Ding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, M., Winkler, M. Small-density solutions in Keller–Segel systems involving rapidly decaying diffusivities. Nonlinear Differ. Equ. Appl. 28, 47 (2021). https://doi.org/10.1007/s00030-021-00709-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-021-00709-4

Keywords

Mathematics Subject Classification

Navigation