Skip to main content
Log in

The Neumann problem for a Barenblatt equation with a multiplicative stochastic force and a nonlinear source term

  • Published:
Nonlinear Differential Equations and Applications NoDEA Aims and scope Submit manuscript

Abstract

In this paper, we are interested in an existence and uniqueness result for a Barenblatt’s type equation forced by a multiplicative noise, with additionally a nonlinear source term and under Neumann boundary conditions. The idea to show such a well-posedness result is to investigate in a first step the additive case with a linear source term. Through a time-discretization of the equation and thanks to results on maximal monotone operators, one is able to handle the non-linearity of the equation and pass to the limit on the discretization parameter. This allows us to show existence and uniqueness of a solution in the case of an additive noise and a linear source term. In a second step, thanks to a fixed point procedure, one shows the announced result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For a given separable Hilbert space X, we denote by \({\mathcal {N}}^2_w(0,T,X)\) the space of predictable X-valued processes endowed with the norm \(||\phi ||^2_{{\mathcal {N}}^2_w(0,T,X)}=E\left[ \int _0^T||\phi ||^2_Xdt\right] \) (see Da Prato-Zabczyk [11] p.94).

  2. \({\mathscr {C}}_w\left([0,T], L^{2}(\Omega , H^1(D))\right)\) denotes the set of functions defined on [0, T] with values in \(L^{2}(\Omega , H^1(D))\) which are weakly continuous.

  3. \(W\big (0,T, H^{1}(D), L^{2}(D)\big )=\{v\in L^{2}(0,T, H^{1}(D))\text { such that }\partial _{t}v\in L^{2}(0,T,L^{2}(D))\}\).

References

  1. Antontsev, S.N., Gagneux, G., Luce, R., Vallet, G.: New unilateral problems in stratigraphy. M2AN Math. Model. Numer. Anal. 40(4), 765–784 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Antontsev, S.N., Gagneux, G., Luce, R., Vallet, G.: A non-standard free boundary problem arising from stratigraphy. Anal. Appl. (Singap.) 4(3), 209–236 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Antontsev, S.N., Gagneux, G., Mokrani, A., Vallet, G.: Stratigraphic modelling by the way of a pseudoparabolic problem with constraint. Adv. Math. Sci. Appl. 19(1), 195–209 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Antontsev, S.N., Gagneux, G., Vallet, G.: On some problems of stratigraphic control. Prikl. Mekh. Tekhn. Fiz. 44(6), 85–94 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Adimurthi, N Seam, Vallet, G.: On the equation of Barenblatt–Sobolev. Commun. Contemp. Math. 13(5), 843–862 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Barenblatt, G.I.: Scaling, self-similarity, and intermediate asymptotics, volume 14 of Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge. With a foreword by Ya B. Zeldovich (1996)

  7. Bauzet, C., Giacomoni, J., Vallet, G.: On a class of quasilinear Barenblatt equations. Revista Real Academia de Ciencias de Zaragoza 38, 35–51 (2012)

    MathSciNet  Google Scholar 

  8. Bauzet, C., Vallet, G.: On abstract Barenblatt equations. Differ. Equ. Appl. 3(4), 487–502 (2011)

    MathSciNet  MATH  Google Scholar 

  9. Bonfanti, G., Frémond, M., Luterotti, F.: Global solution to a nonlinear system for irreversible phase changes. Adv. Math. Sci. Appl. 10(1), 1–23 (2000)

    MathSciNet  MATH  Google Scholar 

  10. Brezis, H.: Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise. Masson, Paris. Théorie et applications (1983)

  11. Da Prato, G., Zabczyk, J.: Stochastic equations in infinite dimensions. Encyclopedia of Mathematics and its Applications, vol. 44. Cambridge University Press, Cambridge (1992)

  12. Hulshof, J., Vázquez, J.L.: Self-similar solutions of the second kind for the modified porous medium equation. Eur. J. Appl. Math. 5(3), 391–403 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Igbida, N.: Solutions auto-similaires pour une équation de Barenblatt. Rev. Mater Apll. 17(1), 21–36 (1996)

    MathSciNet  MATH  Google Scholar 

  14. Kamin, S., Peletier, L.A., Vázquez, J.L.: On the Barenblatt equation of elastoplastic filtration. Indiana Univ. Math. J. 40(4), 1333–1362 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lions, J.-L.: Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, Malakoff (1969)

    MATH  Google Scholar 

  16. Prévôt, C., Röckner, M.: A concise course on stochastic partial differential equations. Lecture Notes in Mathematics, vol. 1905. Springer, Berlin (2007)

  17. Ptashnyk, M.: Degenerate quaslinear pseudoparabolic equations with memory terms and variational inequalities. Nonlinear Anal. 66(12), 2653–2675 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Simon, J.: Una generalización del teorema de Lions-Tartar. Bol. Soc. Esp. Mat. Apl. 40, 43–69 (2007)

    Google Scholar 

  19. Vallet, G.: Sur une loi de conservation issue de la géologie. C. R. Math. Acad. Sci. Paris 337(8), 559–564 (2003)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the joint program between the Higher Education Commission from Pakistan Ministry of Higher Education and the French Ministry of Foreign and European Affairs for the funding of A. Maitlo’s PhD thesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline Bauzet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauzet, C., Lebon, F. & Maitlo, A. The Neumann problem for a Barenblatt equation with a multiplicative stochastic force and a nonlinear source term. Nonlinear Differ. Equ. Appl. 26, 21 (2019). https://doi.org/10.1007/s00030-019-0567-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00030-019-0567-5

Keywords

Mathematics Subject Classification

Navigation