Skip to main content
Log in

Well-posedness for the Cahn-Hilliard-Navier-Stokes Equations Perturbed by Gradient-Type Noise, in Two Dimensions

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

In this work, we study the problem of existence and uniqueness of solutions of the stochastic Cahn-Hilliard-Navier-Stokes system with gradient-type noise. We show that such kind of noise is related to the problem of modelling turbulence. We apply a rescaling argument to transform the stochastic system into a random deterministic one. We split the latter into two parts: the Navier-Stokes part and the Cahn-Hilliard part, respectively. The rescale operators possess good properties which allow to show that the rescaled Navier-Stokes equations have a unique solution, by appealing to \(\delta -\)monotone operators theory. While, well-posedness of the Cahn-Hilliard part is proved via a fixed point argument. Then, again a fixed point argument is used to prove global in time existence of a unique solution to the initial system. All the results are under the requirement that the initial data is in a certain small neighbourhood of the origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flory, P.J.: Thermodynamics of high polymer solutions. J. Chem. Phys. 10, 51–61 (1942)

    Article  Google Scholar 

  2. Cook, H.: Brownian motion in spinodal decomposition. Acta Metall. 18(3), 297–306 (1970)

    Article  Google Scholar 

  3. Da Prato, G., Debussche, A.: Stochastic Cahn-Hilliard equation. Nonlinear Anal. 26(2), 241–263 (1996)

    Article  MathSciNet  Google Scholar 

  4. Orrieri, C., Rocca, E., Scarpa, L.: Optimal control of stochastic phase-field models related to tumor growth. ESAIM Control Optim. Calc. Var. 26, 104 (2020)

    Article  MathSciNet  Google Scholar 

  5. Röckner, M., Yang, H., Zhu, R.: Conservative stochastic 2-dimensional Cahn-Hilliard equation. Ann. Appl. Probab. 31(3), 1336–1375 (2021)

    Article  MathSciNet  Google Scholar 

  6. Brzezniak, Z., Capinski, M., Flandoli, F.: A convergence result for stochastic partial differential equations. Stochastics 24, 423–445 (1988)

    Article  MathSciNet  Google Scholar 

  7. Munteanu, I., Röckner, M.: Global solutions for random vorticity equations perturbed by gradient dependent noise, in two and three dimensions. J. Evol. Equ. 20, 1173–1194 (2020)

    Article  MathSciNet  Google Scholar 

  8. Mikulevicius, R., Rozovskii, B.L.: Global \(L_2\)-solutions of stochastic Navier-Stokes equations. Ann. Prob. 33(1), 137–176 (2005)

    Article  Google Scholar 

  9. Sango, M.: Magnetohydrodynamic turbulent flows: existence results. Phys. D Nonliner Phenom. 239(12), 912–923 (2010)

    Article  MathSciNet  Google Scholar 

  10. Giga, Y., Kobayashi, R.: On constrained equations with singular diffusivity. Methods Appl. Anal. 10(2), 253–278 (2003)

    Article  MathSciNet  Google Scholar 

  11. Giga, M.H., Giga, Y.: Generalized motion by non local curvature in the plane. Arch. Rot. Mech. Anal. 159, 295–333 (2001)

    Article  Google Scholar 

  12. Munteanu, I., Röckner, M.: The total variation flow perturbed by gradient linear multiplicative noise. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 21(1), 1850003 (2018)

    Article  MathSciNet  Google Scholar 

  13. Feireisl, E., Petcu, M.: Stability of strong solutions for a model of incompressible two-phase flow under thermal fluctuations. J. Differ. Equ. 267(3), 1836–1858 (2019)

    Article  MathSciNet  Google Scholar 

  14. A. Di Primio, M. Grasselli, L. Scarpa, A stochastic Allen-Cahn-Navier-Stokes system with singular potential. https://arxiv.org/abs/2205.10521v2

  15. Deugoué, G., Ndongmo Ngana, A., Tachim Medjo, T.: Strong solutions for the stochastic Cahn-Hilliard-Navier-Stokes system. J. Differ. Equ. 275, 27–76 (2021)

    Article  MathSciNet  Google Scholar 

  16. Deugoué, G., Tachim Medjo, T.: Large deviation for a 2D Allen-Cahn-Navier-Stokes model under random influences. Asymptot. Anal. 123(1–2), 41–78 (2021)

    MathSciNet  Google Scholar 

  17. Sun, C., Huang, Q., Liu, H.: The non-Lipschitz stochastic Cahn-Hilliard-Navier-Stokes equations in two space dimensions. Stoch. Dyn. 22(4), 2250003 (2022)

    Article  MathSciNet  Google Scholar 

  18. Giorgini, A., Grasselli, M., Wu, H.: The Cahn-Hilliard-Hele-Shaw system with singular potential. Ann. Inst. H. Poincaré Anal. Non Lineaire 35, 1079–1118 (2018)

    Article  MathSciNet  Google Scholar 

  19. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2011)

    Book  Google Scholar 

  20. Barbu, V.: Nonlinear Differential Equations of Monotone Type in Banach Spaces. Springer, New-York (2010)

    Book  Google Scholar 

  21. Stewart, H.B.: Generation of analytic semigroups by strongly elliptic operators. Trans. Am. Math. Soc. 199, 141–162 (1974)

    Article  MathSciNet  Google Scholar 

  22. Weissler, F.: Semilinear evolution equations in Banach spaces. J. Funct. Anal. 32, 277–296 (1979)

    Article  MathSciNet  Google Scholar 

  23. Ichikawa, A.: Stability of semilinear stochastic evolution equations. J. Math. Anal. Appl. 9(1), 12–14 (1982)

    Article  MathSciNet  Google Scholar 

  24. Brezis, H.: Opératures Maximaux Monotones et sémigroupes de Contractions Dans les ’espaces de Hilbert. North Holland, Amsterdam (1973)

    Google Scholar 

  25. Lang, O., Cirsan, D.: Well-posedness for a stochastic 2D Euler equation with transport noise. Stoch. PDE Anal. Comp. (2022). https://doi.org/10.1007/s40072-021-00233-7

    Article  Google Scholar 

  26. Temam, R.: On the Theory and Numerical Analysis of the Navier-Stokes Equations. University of Maryland, College Park (1973)

    Google Scholar 

Download references

Acknowledgements

The author is indebted to anonymous referees for pertinent suggestions which permitted us to improve the presentation. This work was financially supported by an Alexander von Humboldt Alumni fellowship at the Bielefeld University, Germany. The author would like to express his gratitude for the support offered by prof. M. Röckner during his stay in Bielefeld and helpful discussions.

Funding

Funding was provided by Alexander von Humboldt-Stiftung.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ionuţ Munteanu.

Ethics declarations

Competing interests

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma A.1

For every \(t\ge 0,\) \(\Lambda _M(t),\) defined by (26), is demicontinuous, coercive, bounded and \(\delta -\)monotone.

Proof

Relations Eqs. (5) and (9) imply that there exists a constant \(\mathcal {C}>0\) such that

$$\begin{aligned}{} & {} \left( \varvec{\Gamma }_1^{-1}(t)\varvec{A}\varvec{\Gamma }_1(t)\varvec{y},\varvec{y}\right) \\{} & {} \quad =\left( \varvec{A}\varvec{\Gamma }_1(t)\varvec{y},\varvec{\Gamma }_1(t)\varvec{y}\right) =\nu _0\Vert \varvec{\Gamma }_1(t)\varvec{y}\Vert ^2\ge \frac{\nu _0}{C}\Vert \varvec{y}\Vert ^2=:\mathcal {C}\Vert \varvec{y}\Vert ^2,\ \forall \varvec{y}\in \varvec{V}, t\in [0,T].\end{aligned}$$

Next, we show that

$$\begin{aligned}{} & {} \left| (\varvec{\Gamma }_1^{-1}(t)\varvec{B}_M(\varvec{\Gamma }_1(t)\varvec{y})-\varvec{\Gamma }_1^{-1}(t)\varvec{B}_M(\varvec{\Gamma }_1(t)\varvec{z}),\varvec{y}-\varvec{z})\right| \nonumber \\{} & {} \quad \le \frac{1}{2}\mathcal {C}\Vert \varvec{y}-\varvec{z}\Vert ^2+C_M|\varvec{y}-\varvec{z}|^2,\end{aligned}$$
(41)

for all \(\varvec{y},\varvec{z}\in \varvec{V}.\) To this end, let \(\Vert \varvec{\Gamma }_1(t)\varvec{y}\Vert ,\Vert \varvec{\Gamma }_1(t)\varvec{z}\Vert \le M\). Then, making use of Eq. (5), we have

$$\begin{aligned}\begin{aligned}&(\Gamma ^{-1}_1(t)\varvec{B}_M(\varvec{\Gamma }_1(t)\varvec{y})-\Gamma ^{-1}_1(t)\varvec{B}_M(\varvec{\Gamma }_1(t)\varvec{z}),\varvec{y}-\varvec{z})\\&\quad =(\varvec{B}(\varvec{\Gamma }_1(t)\varvec{y})-\varvec{B}(\varvec{\Gamma }_1(t)\varvec{z}),\varvec{\Gamma }_1(t)(\varvec{y}-\varvec{z}))\\&\quad =b(\varvec{\Gamma }_1(t)\varvec{y},\varvec{\Gamma }_1(t)\varvec{y},\varvec{\Gamma }_1(t)(\varvec{y}-\varvec{z}))-b(\varvec{\Gamma }_1(t)\varvec{z},\varvec{\Gamma }_1(t)\varvec{z},\varvec{\Gamma }_1(t)(\varvec{y}-\varvec{z}))\\&\quad =b(\varvec{\Gamma }_1(t)(\varvec{y}-\varvec{z}),\varvec{\Gamma }_1(t)\varvec{y},\varvec{\Gamma }_1(t)(\varvec{y}{-}\varvec{z})){+}b(\varvec{\Gamma }_1(t)\varvec{z},\varvec{\Gamma }_1(t)(\varvec{y}{-}\varvec{z}),\varvec{\Gamma }_1(t)(\varvec{y}{-}\varvec{z}))\\&\quad =b(\varvec{\Gamma }_1(t)(\varvec{y}-\varvec{z}),\varvec{\Gamma }_1(t)\varvec{y},\varvec{\Gamma }_1(t)(\varvec{y}-\varvec{z})),\end{aligned}\end{aligned}$$

in virtue of Eq. (12). Hence, taking into account relation Eq. (13), it yields that

$$\begin{aligned}\begin{aligned}&|(\Gamma ^{-1}_1(t)\varvec{B}_M(\varvec{\Gamma }_1(t)\varvec{y})-\Gamma ^{-1}_1(t)\varvec{B}_M(\varvec{\Gamma }_1(t)\varvec{z}),\varvec{y}-\varvec{z})| \\&\quad \le C|\varvec{\Gamma }_1(t)(\varvec{y}-\varvec{z})|\Vert \varvec{\Gamma }_1(t)\varvec{y}\Vert \Vert \varvec{\Gamma }_1(t)(\varvec{y}-\varvec{z})\Vert \\&\text {(invoking relations (10), and (7) for }\chi (x)=|x|^2)\\&\quad \le \frac{1}{2}\mathcal {C}\Vert \varvec{y}-\varvec{z}\Vert ^2+C_M|\varvec{y}-\varvec{z}|^2. \end{aligned}\end{aligned}$$

Now consider the case where \(\Vert \varvec{\Gamma }_1(t)\varvec{y}\Vert>M, \Vert \varvec{\Gamma }_1(t)\varvec{z}\Vert >M.\) We have

$$\begin{aligned}&(\varvec{\Gamma }_1^{-1}(t)\varvec{B}_M(\varvec{\Gamma }_1(t)\varvec{y})-\varvec{\Gamma }_1^{-1}(t)\varvec{B}_M(\varvec{\Gamma }_1(t)\varvec{z}),\varvec{y}-\varvec{z})\\&\quad =\frac{M^2}{\Vert \varvec{\Gamma }_1(t)\varvec{y}\Vert ^2}\left[ b(\varvec{\Gamma }_1(t)\varvec{y},\varvec{\Gamma }_1(t)\varvec{y},\varvec{\Gamma }_1(t)(\varvec{y}-\varvec{z}))-b(\varvec{\Gamma }_1(t)\varvec{z},\varvec{\Gamma }_1(t)\varvec{z},\varvec{\Gamma }_1(t)(\varvec{y}-\varvec{z}))\right] \\&\qquad +\left( \frac{M^2}{\Vert \varvec{\Gamma }_1(t)\varvec{y}\Vert ^2}-\frac{M^2}{\Vert \varvec{\Gamma }_1(t)\varvec{z}\Vert ^2}\right) b(\varvec{\Gamma }_1(t)\varvec{z},\varvec{\Gamma }_1(t)\varvec{z},\varvec{\Gamma }_1(t)(\varvec{y}-\varvec{z}))\\&\quad =\frac{M^2}{\Vert \varvec{\Gamma }_1(t)\varvec{y}\Vert ^2}b(\varvec{\Gamma }_1(t)(\varvec{y}-\varvec{z}),\varvec{\Gamma }_1(t)\varvec{y},\varvec{\Gamma }_1(t)(\varvec{y}-\varvec{z}))\\&\qquad +M^2\left( \frac{\Vert \varvec{\Gamma }_1(t)\varvec{z}\Vert ^2-\Vert \varvec{\Gamma }_1(t)\varvec{y}\Vert ^2}{\Vert \varvec{\Gamma }_1(t)\varvec{y}\Vert ^2\Vert \varvec{\Gamma }_1(t)\varvec{z}\Vert ^2}\right) b(\varvec{\Gamma }_1(t)\varvec{z},\varvec{\Gamma }_1(t)\varvec{y},\varvec{\Gamma }_1(t)(\varvec{y}-\varvec{z}))\\&\quad \le C_M\Vert \varvec{y}-\varvec{z}\Vert |\varvec{y}-\varvec{z}|\\&\qquad +\frac{CM^2}{\Vert \varvec{\Gamma }_1(t)\varvec{y}\Vert ^2\Vert \varvec{\Gamma }_1(t)\varvec{z}\Vert ^2} \left| \Vert \varvec{\Gamma }_1(t)\varvec{z}\Vert ^2-\Vert \varvec{\Gamma }_1(t)\varvec{y}\Vert ^2\right| \\&\quad \Vert \varvec{\Gamma }_1(t)\varvec{z}\Vert \Vert \varvec{\Gamma }_1(t)\varvec{y}\Vert |\varvec{\Gamma }_1(t)(\varvec{y}-\varvec{z})|^\frac{1}{2}\Vert \varvec{\Gamma }_1(t)(\varvec{y}-\varvec{z}\Vert ^\frac{1}{2}\\&\quad \le C_M\Vert \varvec{y}-\varvec{z}\Vert |\varvec{y}-\varvec{z}|\\&\quad +\frac{CM^2}{\Vert \varvec{\Gamma }_1(t)\varvec{y}\Vert \Vert \varvec{\Gamma }_1(t)\varvec{z}\Vert } (\Vert \varvec{\Gamma }_1(t)\varvec{z}\Vert +\Vert \varvec{\Gamma }_1(t)\varvec{y}\Vert )\Vert \varvec{\Gamma }_1(t)(\varvec{y}-\varvec{z})\Vert ^\frac{3}{2}|\varvec{\Gamma }_1(t)(\varvec{y}-\varvec{z})|^\frac{1}{2}\\&\quad \le \frac{1}{2}\mathcal {C}\Vert \varvec{y}-\varvec{z}\Vert ^2_1+C_M|\varvec{y}-\varvec{z}|^2_2,\end{aligned}$$

where we have used Young’s inequality and relations Eqs. (10), (13) and (7).

Similarly one can also treat the last case \(\Vert \varvec{\Gamma }_1(t)\varvec{y}\Vert >M,\ \Vert \varvec{\Gamma }_1(t)\varvec{z}\Vert \le M\) (for details see pp. 255 in [20]).

Hence, we have by Eq. (10) that

$$\begin{aligned}\begin{aligned}(\Lambda _M(t)\varvec{y},\varvec{y})&=(\varvec{\Gamma }_1^{-1}(t)\varvec{A}\varvec{\Gamma }_1(t)\varvec{y},\varvec{y})+(\Gamma ^{-1}_1(t)\varvec{B}_M(\varvec{\Gamma }_1(t)\varvec{y}),\varvec{y})\\&\quad =\nu _0\Vert \varvec{\Gamma }_1(t)\varvec{y}\Vert ^2+b(\varvec{\Gamma }_1(t)\varvec{y},\varvec{\Gamma }_1(t)\varvec{y},\varvec{\Gamma }_1(t)\varvec{y})\\&\quad =\nu _0\Vert \varvec{\Gamma }_1(t)\varvec{y}\Vert ^2\le \nu _0C\Vert \varvec{y}\Vert ^2,\ \forall \varvec{y}\in \varvec{V}.\end{aligned}\end{aligned}$$

Thus, \(\Lambda _M(t)\) is demi continuous and bounded. Also, we have by Eq. (9) that

$$\begin{aligned}(\Lambda _M(t)\varvec{y},\varvec{y})=\nu _0\Vert \varvec{\Gamma }_1(t)\varvec{y}\Vert ^2\ge \mathcal {C}\Vert \varvec{y}\Vert ^2,\ \forall \varvec{y}\in \varvec{V}.\end{aligned}$$

Hence, \(\Lambda _M\) is coercive. Moreover, in virtue of Eq. (41), we see that \(\Lambda _M(t)\) is \(\delta -\)monotone, that is,

$$\begin{aligned}(\Lambda _M(t)\varvec{y}-\Lambda _M(t)\varvec{z},\varvec{y}-\varvec{z})+\delta |\varvec{y}-\varvec{z}|^2\ge 0,\ \forall \varvec{y},\varvec{z}\in \varvec{V},\ \forall t\in [0,T],\end{aligned}$$

where \(\delta \) is such that \(\delta >C_M.\) \(\square \)

Lemma A.2

The solution \(\varvec{Y}_M\) to Eq. (29) satisfies, for M large enough,

$$\begin{aligned}\Vert \varvec{Y}_M(t)\Vert \le M\ \ \mathbb {P}-\text {a.s.},\ \forall t\in [0,Nh].\end{aligned}$$

Proof

We aim to apply the Itô’s formula to the \(\varvec{V}-\)norm in Eq. (29). To do this, we consider the Galerkin approximation of Eq. (29). More precisely, based on the eigenfunctions set of the Stokes operator, \(\left\{ \varvec{e}_j\right\} _j\), we define \(\varvec{H}_n=\text {span}\left\{ \varvec{e}_1,\varvec{e}_2,...,\varvec{e}_n\right\} \) and denote by \(\varvec{Y}_M^n\in \varvec{H}_n\) the solution to

$$\begin{aligned}{} & {} d{\varvec{Y}^n_M}(t)+[\varvec{A}^n{\varvec{Y}^n_M}(t)+\varvec{B}^n_M{\varvec{Y}^n_M}(t)]dt=\varvec{\Gamma }_1(t)F^n(\varphi )(t)dt\nonumber \\{} & {} \quad +\varvec{P}\varvec{L}^n_1{\varvec{Y}^n_M}(t)\circ dW_1(t),\ t>0,\end{aligned}$$
(42)

where \(\varvec{A}^n:\varvec{H}_n\rightarrow \varvec{H}_n,\ \varvec{B}^n:\varvec{V}\cap \varvec{H}_n \rightarrow \varvec{H}_n,\ F^n:\varvec{H}_n\rightarrow \varvec{H}_n,\ \varvec{L}^n_1:\varvec{V}\cap \varvec{H}_n\rightarrow \varvec{H}_n\) are defined respectively by

$$\begin{aligned}\begin{aligned}&\varvec{A}^n\varvec{u}=\sum _{i=1}^n(\varvec{A}\varvec{u},\varvec{e}_i)\varvec{e}_i,\ \varvec{B}^n(\varvec{u})=\sum _{i=1}^n(\varvec{B}(\varvec{u}),\varvec{e}_i)\varvec{e}_i,\\&\quad F^n(\varphi )=\sum _{i=1}^n(F(\varphi ),\varvec{e}_i)\varvec{e}_i,\ \varvec{P}\varvec{L}_1^n\varvec{u}=\sum _{i=1}^n(\varvec{P}\varvec{L}_1\varvec{u},\varvec{e}_i)\varvec{e}_i.\end{aligned}\end{aligned}$$

Itô’s formula in Eq. (42), yields

$$\begin{aligned} \begin{aligned}&d\ln (e+\Vert \varvec{Y}^n_{M}(t)\Vert ^2)\\&\quad =\frac{1}{e+\Vert \varvec{Y}^n_M(t)\Vert ^2}d\Vert \varvec{Y}^n_M(t)\Vert ^2-\frac{1}{\nu _0}\frac{1}{(e+\Vert \varvec{Y}^n_M(t)\Vert ^2)^2}\left[ ( \varvec{P}\varvec{L}^n_1\varvec{Y}^n_M(t),\varvec{A}\varvec{Y}^n_M(t))\right] ^2dt\\&\quad \le C\frac{1}{e+\Vert \varvec{Y}^n_M(t)\Vert ^2}\left[ -( \varvec{A}^n\varvec{Y}^n_M(t),\varvec{A}\varvec{Y}^n_M(t))-( \varvec{B}^n_M(\varvec{Y}^n_M(t)),\varvec{A}\varvec{Y}^n_M(t))\right. \ \\&\qquad \left. \ +(\varvec{\Gamma }_1(t)F^n(\varphi (t)),\varvec{A}\varvec{Y}^n_M(t))) + ((\varvec{P}\varvec{L}^n_1)^2\varvec{Y}^n_M(t), \varvec{A}\varvec{Y}^n_M(t)) \right. \\&\qquad \left. +( \varvec{P}\varvec{L}^n_1\varvec{Y}^n_M(t),\varvec{A}\varvec{P}\varvec{L}^n_1\varvec{Y}^n_M(t))\right] dt \\&\qquad +C\frac{1}{e+\Vert \varvec{Y}^n_M(t)\Vert ^2}( \varvec{P}\varvec{L}^n_1\varvec{Y}^n_M(t)dW_1(t),\varvec{A}\varvec{Y}^n_M(t))\end{aligned}\end{aligned}$$
(43)

Making use of relation Eq. (11) for the fourth term and the fifth term in the RHS of Eq. (43), we get

$$\begin{aligned} \begin{aligned}&d\ln (e+\Vert \varvec{Y}^n_{M}(t)\Vert ^2)\\&\quad \le C\frac{1}{e+\Vert \varvec{Y}^n_M(t)\Vert ^2}\left[ -|\varvec{A}\varvec{Y}^n_M(t)|^2+|b^n(\varvec{Y}^n_M(t),\varvec{Y}^n_M(t),\varvec{A}\varvec{Y}^n_M(t))|\right. \\&\qquad \left. +|(\varvec{\Gamma }_1(t)F^n(\varphi (t)), \varvec{A}\varvec{Y}^n_M(t))|\right] dt\\&\qquad +\frac{1}{e+\Vert \varvec{Y}^n_M(t)\Vert ^2}\left[ C_\varepsilon \Vert \varvec{Y}^n_M(t)\Vert ^2+\varepsilon |\varvec{A}\varvec{Y}^n_M(t)|^2\right] dt\\&\qquad +C\sum _{|\alpha |=1}\frac{1}{e+\Vert \varvec{Y}^n_M(t)\Vert ^2}(D^\alpha \varvec{P}\varvec{L}^n_1\varvec{Y}^n_M(t)dW_1(t),D^\alpha \varvec{Y}^n_M(t)).\end{aligned}\end{aligned}$$
(44)

It follows, by integration over time, that

$$\begin{aligned} \begin{aligned}&\ln (e+\Vert \varvec{Y}^n_M(t)\Vert ^2)\le \ln (e+\Vert \varvec{Y}^n_0\Vert ^2)\\&\qquad +C\int _0^t\frac{1}{e+\Vert \varvec{Y}^n_M(s)\Vert ^2}\left[ (-1+\varepsilon )|\varvec{A}\varvec{Y}^n_M(s)|^2+|(\varvec{\Gamma }_1(s)F^n(\varphi (s)), \varvec{A}\varvec{Y}^n_M(s))|\right] ds\\&\qquad +C\int _0^t\frac{1}{e+\Vert \varvec{Y}^n_M(s)\Vert ^2}|b^n(\varvec{Y}^n_M(s),\varvec{Y}^n_M(s),\varvec{A}\varvec{Y}^n_M(s))|ds\\&\qquad +C\sum _{|\alpha |=1}\int _0^t\frac{1}{e+\Vert \varvec{Y}^n_M(s)\Vert ^2}(D^\alpha \varvec{P}\varvec{L}^n_1\varvec{Y}^n_M(s),D^\alpha \varvec{Y}^n_M(s))dW_1(s).\end{aligned}\end{aligned}$$
(45)

In the following, we will focus on bounding the RHS of Eq. (45). To this end, taking advantage of Eq. (14), then using Eq. (31) and Young’s inequality, we deduce that

$$\begin{aligned}&\frac{1}{e+\Vert \varvec{Y}^n_M(t)\Vert ^2}|b^n(\varvec{Y}^n_M(t),\varvec{Y}^n_M(t),\varvec{A}\varvec{Y}^n_M(t))|\\&\quad \le C\frac{1}{e+\Vert \varvec{Y}^n_M(t)\Vert ^2}|\varvec{Y}^n_M(t)|^\frac{1}{2}\Vert \varvec{Y}^n_M(t)\Vert |\varvec{A}\varvec{Y}^n_M(t)|^\frac{3}{2}\\&\quad \le C\frac{1}{\root 4 \of {e+\Vert \varvec{Y}^n_M(t)\Vert ^2}}\Vert \varvec{Y}^n_M(t)\Vert \frac{1}{\root 4 \of {(e+\Vert \varvec{Y}^n_M(t)\Vert ^2)^3}}|\varvec{A}\varvec{Y}^n_M(t)|^\frac{3}{2}\\&\quad \le C\Vert \varvec{Y}^n_M(t)\Vert ^\frac{1}{2}\frac{1}{\root 4 \of {(e+\Vert \varvec{Y}^n_M(t)\Vert ^2)^3}}|\varvec{A}\varvec{Y}^n_M(t)|^\frac{3}{2}\\&\quad \le C\Vert \varvec{Y}^n_M(t)\Vert ^2+\varepsilon \frac{1}{e+\Vert \varvec{Y}^n_M(t)\Vert ^2}|\varvec{A}\varvec{Y}^n_M(t)|^2.\end{aligned}$$

Hence, integrating over time and using Eq. (31), we get

$$\begin{aligned} \begin{aligned}&\int _0^t\frac{1}{e+\Vert \varvec{Y}^n_M(s)\Vert ^2}|b^n(\varvec{Y}^n_M(s),\varvec{Y}^n_M(s),\varvec{A}\varvec{Y}^n_M(s))|ds\\&\quad \le C\int _0^t\Vert \varvec{Y}^n_M(s)\Vert ^2ds+\varepsilon \int _0^t\frac{1}{e+\Vert \varvec{Y}^n_M(s)\Vert ^2}|\varvec{A}\varvec{Y}^n_M(s)|^2ds\\&\quad \le C(h)R^2+\varepsilon \int _0^t\frac{1}{e+\Vert \varvec{Y}^n_M(s)\Vert ^2}|\varvec{A}\varvec{Y}^n_M(s)|_2^2ds.\end{aligned}\end{aligned}$$
(46)

Next, in virtue of Eq. (28) and Young’s inequality, we have

$$\begin{aligned}{} & {} \int _0^t\frac{1}{e+\Vert \varvec{Y}^n_M(s)\Vert ^2}|(\varvec{\Gamma }_1(s)F(\varphi (s)),\varvec{A}\varvec{Y}^n_M(s))|ds\le C(h,R)\nonumber \\{} & {} \quad +\varepsilon \int _0^t\frac{1}{e+\Vert \varvec{Y}^n_M(s)\Vert ^2}|\varvec{A}\varvec{Y}^n_M(s)|_2^2ds.\end{aligned}$$
(47)

Furthermore, we let

$$\begin{aligned} Z(t)=\sum _{|\alpha |=1}\int _0^t\frac{1}{e+\Vert \varvec{Y}^n_M(s)\Vert _1^2}(D^\alpha \varvec{P}\varvec{L}^n_1\varvec{Y}^n_M(s),D^\alpha \varvec{Y}^n_M(s))dW_1(s).\end{aligned}$$

By the Burkholder-Davis-Gundy inequality we have

$$\begin{aligned}\mathbb {E}\left[ \sup _{s\in [0,t]}\left| \int _0^sdZ_r\right| \right] \le C\mathbb {E}\left[ \left<\int _0^\cdot dZ_r\right>_t^{1/2}\right] .\end{aligned}$$

Clearly seen,

$$\begin{aligned}\begin{aligned}|(D^\alpha \varvec{P}\varvec{L}^n_1\varvec{Y}^n_M(s), D^\alpha \varvec{Y}^n_M(s))|\le C\Vert \varvec{Y}^n_M(s)\Vert ^2.\end{aligned}\end{aligned}$$

Therefore, the quadratic variation

$$\begin{aligned}\left<\int _0^\cdot dZ_s\right>_t\le C\int _0^t\frac{\Vert \varvec{Y}^n_M(s)\Vert ^4}{(e+\Vert \varvec{Y}^n_M(s)\Vert ^2)^2}ds\le Ct.\end{aligned}$$

In consequence, the Burkholder-Davis-Gundy inequality gives

$$\begin{aligned} \mathbb {E}\left[ \sup _{s\in [0,t]}\left| \int _0^sdZ_r\right| \right] \le C\sqrt{t}.\end{aligned}$$
(48)

Now, we return to relation Eq. (45). We take the supreme over time, and apply the expectation, then invoke the relations Eqs. (46)–(48). It follows that, if \(\varepsilon \) is small enough, we have

$$\begin{aligned} \begin{aligned}\mathbb {E}\sup _{0\le r\le t}\ln (e+\Vert \varvec{Y}^n_M(r)\Vert ^2)\le C(h,R),\ \forall t\in [0,Nh].\end{aligned}\end{aligned}$$
(49)

Thus, in light of Eq. (49), we get

$$\begin{aligned}\mathbb {P}\left( \Vert \varvec{Y}_M^n(t)\Vert >M\right) \le \frac{\mathbb {E}[\ln (\Vert \varvec{Y}_M^n(t)\Vert ^2+e)]}{M^2+e}\le \frac{C(h,R)}{M^2+e}\rightarrow 0 \text { for }M\rightarrow \infty .\end{aligned}$$

It follows that, for M large enough, we have

$$\begin{aligned} \Vert \varvec{Y}^n_M(t)\Vert \le M\ \mathbb {P}-\text {a.s.}, \forall t\in [0,Nh].\end{aligned}$$
(50)

To conclude with the existence part, we prove the convergence of the Galerkin scheme. To this aim, let us once again apply Itô’s formula to \(\varvec{Y}_M-\varvec{Y}^n_M\), where \(\varvec{Y}_M\) solves Eq. (29) and \(\varvec{Y}_M^n\) solves Eq. (42), respectively. We get

$$\begin{aligned}\begin{aligned}&|\varvec{Y}_M(t)-\varvec{Y}_M^n(t)|^2+2\nu _0\int _0^t\Vert \varvec{Y}_M(s)-\varvec{Y}_M^n(s)\Vert ^2ds\\&\quad \le |\varvec{Y}_0-\varvec{Y}_0^n|^2+\int _0^t(\varvec{B}_M\varvec{Y}_M(s)-\varvec{B}_M^n\varvec{Y}_M^n(s),\varvec{Y}_M(s)-\varvec{Y}_M^n(s))ds\\&\qquad +\int _0^t(\varvec{\Gamma }_1F(\varphi )-\varvec{\Gamma }_1F^n(\varphi ),\varvec{Y}_M(s)-\varvec{Y}_M^n(s))ds\\&\qquad +\int _0^t(\varvec{P}\varvec{L}_1\varvec{Y}_M(s)-\varvec{P}\varvec{L}^n_1\varvec{Y}_M^n(s),\varvec{Y}_M(s)-\varvec{Y}_M^n(s))dW_1(s)\end{aligned}\end{aligned}$$

Using similar ideas as in Eq. (41) for the nonlinear term \(\varvec{B}_M\) in the RHS, the above leads to

$$\begin{aligned}\begin{aligned}&|\varvec{Y}_M(t)-\varvec{Y}_M^n(t)|^2+C\int _0^t\Vert \varvec{Y}_M(s)-\varvec{Y}_M^n(s)\Vert ^2ds\\&\quad \le |\varvec{Y}_0-\varvec{Y}_0^n|_2^2+\int _0^t\Vert F(\varphi )-F^n(\varphi )\Vert _{\varvec{V}'}^2ds\\&\quad \ \ +\int _0^t(\varvec{P}\varvec{L}_1\varvec{Y}_M(s)-\varvec{P}\varvec{L}^n_1\varvec{Y}_M^n(s),\varvec{Y}_M(s)-\varvec{Y}_M^n(s))dW_1(s).\end{aligned}\end{aligned}$$

Consequently, taking the supreme and the expectation, we get

$$\begin{aligned}\begin{aligned}&\mathbb {E}\sup _{0\le t\le T}|\varvec{Y}_M(t)-\varvec{Y}_M^n(t)|^2+C\int _0^t\mathbb {E}\sup _{0\le s\le t}\Vert \varvec{Y}_M(s)-\varvec{Y}_M^n(s)\Vert ^2ds\\&\quad \le |\varvec{Y}_0-\varvec{Y}_0^n|^2+C\int _0^t\mathbb {E}\Vert F(\varphi )-F^n(\varphi )\Vert _{\varvec{V}'}^2ds.\end{aligned}\end{aligned}$$

Since \(\varvec{Y}_0^n\rightarrow \varvec{Y}_0\) in \(\varvec{H}\) and \(F^n(\varphi )\rightarrow F(\varphi )\) in \(L^2(0,T;\varvec{V}')\), the above implies that \(\varvec{Y}_M^n\rightarrow \varvec{Y}_M\) in \(C([0,T];\varvec{H})\cap L^2(0,T;\varvec{V})\). The conclusion follows immediately. \(\square \)

Lemma A.3

For all \(n\in \left\{ 0,1,...,N-1\right\} \), there exist positive constants, depending only on h (and independent on n), \(C_1,C_2(h)-C_5(h),\) such that

$$\begin{aligned} \begin{aligned}\Vert \mathcal {G}_n(\varphi )\Vert _{\mathcal {X}_n}\le C_1(n+1)\sum _{\alpha \in \mathbb {N}^2,|\alpha |=1,2}|D^\alpha \varphi _{nh}|_2+C_2(h)R^2+C_3(h)R^3,\ \forall \varphi \in B_{R,n}, \end{aligned}\nonumber \\\end{aligned}$$
(51)

and

$$\begin{aligned} \Vert \mathcal {G}_n\varphi _1-\mathcal {G}_n\varphi _2\Vert _{\mathcal {X}_n}\le (C_{4}(h)R+C_{5}(h)R^2)\Vert \varphi _1-\varphi _2\Vert _{\mathcal {X}_n},\ \forall \varphi _1,\varphi _2\in B_{R,n}.\end{aligned}$$
(52)

Proof

We estimate \(\mathcal {G}_n\varphi \) in the norm of \(\mathcal {X}_n\). To this end, let \(\alpha \in \mathbb {N}^2\) be such that \(|\alpha |=1\). By using Eq. (17) with \(p=q=2\) and relations Eq. (7), for \(\chi (x)=|x|^2\), and Eq. (8), we see that

$$\begin{aligned} \begin{aligned}&\left| D^\alpha e^{(t-s)S}\Gamma _2^{-1}(s)[\varvec{\Gamma }_1(s)\varvec{y}(s)\cdot \nabla (\Gamma _2(s)\varphi (s))]\right| _2 \\&\quad \le c(t-s)^{-\frac{1}{4}}\left| \Gamma _2^{-1}[\varvec{\Gamma }_1(s)\varvec{y}(s)\cdot \nabla (\Gamma _2(s)\varphi (s))]\right| _2\\&\quad =c(t-s)^{-\frac{1}{4}}\left| \varvec{\Gamma }_1(s)\varvec{y}(s)\cdot \nabla (\Gamma _2(s)\varphi (s))\right| _2\\&\quad \le c(t-s)^{-\frac{1}{4}}|\varvec{\Gamma }_1(s)\varvec{y}(s)||\nabla \Gamma _2(s)\varphi (s)|_2\\&\quad \le c(t-s)^{-\frac{1}{4}}|\varvec{y}(s)||\nabla \varphi (s)|_2\\&\quad \le C(h)R^2(t-s)^{-\frac{1}{4}}(n+1)^{-1}(s-nh)^{-\frac{1}{8}}\Vert \varphi \Vert _{\mathcal {X}_n},\ \forall nh\le s\le t\le (n+1)h,\end{aligned}\end{aligned}$$
(53)

by invoking the hypothesis on the \(\varvec{H}\)-norm of \(\varvec{y}\) and relation Eq. (34). It yields that if \(\varphi \in B_{R,n}\) then

$$\begin{aligned}&\int _{nh}^t\left| D^\alpha e^{(t-s)S}\Gamma _2^{-1}(s)[\varvec{\Gamma }_1(s)\varvec{y}(s)\cdot \nabla (\Gamma _2(s)\varphi (s))]\right| _2ds\nonumber \\&\quad \le C(h)R^3(n+1)^{-1}\int _{nh}^t (t-s)^{-\frac{1}{4}}(s-nh)^{-\frac{1}{8}}ds\nonumber \\&\quad =C(h)R^3(n+1)^{-1} \int _{0}^{t-nh} (t-nh-s)^{-\frac{1}{4}}s^{-\frac{1}{8}}ds\nonumber \\&\quad =C(h)R^3(n+1)^{-1}\int _{0}^{t-nh} (t-nh-s)^{-\frac{1}{4}}s^{\frac{3}{4}}s^{-\frac{3}{4}}s^{-\frac{1}{8}}ds\nonumber \\&\quad \le C(h)h^{\frac{3}{4}}R^3(n+1)^{-1}\int _{0}^{t-nh} (t-nh-s)^{-\frac{1}{4}}s^{-\frac{7}{8}}ds\nonumber \\&\quad =C(h)h^{\frac{3}{4}}B\left( \frac{1}{8},\frac{3}{4}\right) R^3(n+1)^{-1}(t-nh)^{-\frac{1}{8}}\nonumber \\&\quad =c_1(h)R^3(n+1)^{-1}(t-nh)^{-\frac{1}{8}},\ t\in [nh,(n+1)h], \end{aligned}$$
(54)

where B(ab) is the classical beta function.

We go on with

$$\begin{aligned} \begin{aligned}&\left| D^\alpha e^{(t-s)S}\Delta (\varphi (s)-M(\varphi (s)))^3\right| _2\\&\quad \le \sum _{\beta \in \mathbb {N}^2,|\beta |=1}\left| D^\alpha e^{(t-s)S}D^\beta D^\beta (\varphi (s)-M(\varphi (s)))^3\right| _2\\&\quad =\sum _{\beta \in \mathbb {N}^2,|\beta |=1}\left| D^\alpha D^\beta e^{(t-s)S} D^\beta (\varphi (s)-M(\varphi (s)))^3\right| _2\\&\quad =3\sum _{\beta \in \mathbb {N}^2,|\beta |=1}\left| D^{\alpha +\beta } e^{(t-s)S} (\varphi (s)-M(\varphi (s)))^2D^\beta (\varphi (s)-M(\varphi (s)))\right| _2.\end{aligned}\end{aligned}$$
(55)

Involving relation Eq. (17) for \(q=\frac{6}{5},p=2, |\alpha +\beta |=2\), then using the generalized Hölder inequality for \(\frac{5}{6}=\frac{1}{3}+\frac{1}{2}\), we deduce that

$$\begin{aligned} \begin{aligned}&\left| D^\alpha e^{(t-s)S}\Delta (\varphi (s)-M(\varphi (s)))^3\right| _2\\&\quad \le 3c (t-s)^{-\frac{2}{3}}\sum _{\beta \in \mathbb {N}^2,|\beta |=1}|(\varphi (s)-M(\varphi (s)))^2D^\beta \varphi (s)|_\frac{6}{5}\\&\quad \le 3c(t-s)^{-\frac{2}{3}}\sum _{\beta \in \mathbb {N}^2,|\beta |=1}|(\varphi (s)-M(\varphi (s)))^2|_3|D^\beta \varphi (s)|_2\\&\quad \le C(t-s)^{-\frac{2}{3}}\sum _{\beta \in \mathbb {N}^2,|\beta |=1}|\varphi (s)-M(\varphi (s))|_6^2|D^\beta \varphi (s)|_2\\&\quad \text { (using the Sobolev embedding }H^1\subset L^6)\\&\quad \le C(t-s)^{-\frac{2}{3}}\sum _{\beta \in \mathbb {N}^2,|\beta |=1}\Vert \varphi (s)-M(\varphi (s))\Vert ^2_1|D^\beta \varphi (s)|_2\\&\quad \le C(t-s)^{-\frac{2}{3}}|\nabla (\varphi (s)-M(\varphi (s)))|_2^2|\nabla \varphi (s)|_2. \end{aligned}\end{aligned}$$
(56)

For the last inequality, we have used that, in virtue of the Poincaré inequality Eq. (15), the \(H^1\)-norm of \(f-M(f)\) is equivalent with the \(|\nabla \cdot |_2\)- norm of \(f-M(f)\). Therefore, if \(\varphi \in B_{R,n}\), we have

$$\begin{aligned} \begin{aligned}&\int _{nh}^t\left| D^\alpha e^{(t-s)S}\Delta (\varphi (s)-M(\varphi (s)))^3\right| _2ds\\&\quad \le C\int _{nh}^t(t-s)^{-\frac{2}{3}}|\nabla \varphi (s)|_2^3ds\\&\quad =C\int _{nh}^t(t-s)^{-\frac{3}{4}}(t-s)^\frac{1}{12}|\nabla \varphi (s)|_2^3ds\\&\quad \le C(n+1)^{-3}R^3h^\frac{1}{12}\int _{nh}^t(t-s)^{-\frac{3}{4}}(s-nh)^{-\frac{3}{8}}ds\\&\quad \le C(h)B\left( \frac{5}{8},\frac{1}{4}\right) R^3(n+1)^{-1}(t-nh)^{-\frac{1}{8}}\\&\quad =c_2(h)R^3(n+1)^{-1}(t-nh)^{-\frac{1}{8}},\ nh\le t\le (n+1)h.\end{aligned}\end{aligned}$$
(57)

Obviously, with similar arguments as above, we also have

$$\begin{aligned} \begin{aligned}&\int _{nh}^t\left| D^\alpha e^{(t-s)S}\Delta (\varphi (s)-M(\varphi (s)))^2\right| _2ds\\&\quad \le C(h)(n+1)^{-2}R^2\int _{nh}^t(t-s)^{-\frac{3}{4}}(s-nh)^{-\frac{2}{8}}ds\\&\quad \le C(h)(n+1)^{-1}R^2\int _{nh}^t(t-s)^{-\frac{3}{4}}(s-nh)^\frac{1}{8}(s-nh)^{-\frac{3}{8}}ds\\&\quad \le C(h)h^\frac{1}{8}R^2B\left( \frac{5}{8},\frac{1}{4}\right) (n+1)^{-1}(t-nh)^{-\frac{1}{8}}\\&\quad =c_3(h)R^2(n+1)^{-1}(t-nh)^{-\frac{1}{8}},\ nh\le t\le (n+1)h.\end{aligned}\end{aligned}$$
(58)

We move on to the second order derivatives. Let \(\alpha \in \mathbb {N}^2\) be such that \(|\alpha |=2\). We have by Eq. (17) for \(p=q=2,\ |\alpha |=2,\) that

$$\begin{aligned} \begin{aligned}&\left| D^\alpha e^{(t-s)S}\Gamma _2^{-1}(s)[\varvec{\Gamma }_1(s)y(s)\cdot \nabla (\Gamma _2(s)\varphi (s))]\right| _2\\&\quad \le c(t-s)^{-\frac{1}{2}}|y(s)||\nabla \varphi (s)|_2\\&\quad \le C(h)R^2(t-s)^{-\frac{1}{2}}(n+1)^{-1}(s-nh)^{-\frac{1}{8}}\Vert \varphi \Vert _{\mathcal {X}_n}\end{aligned}\end{aligned}$$
(59)

Thus, for \(\varphi \in B_{R,n}\), we have

$$\begin{aligned}&\int _{nh}^t\left| D^\alpha e^{(t-s)S}\Gamma _2^{-1}(s)[\varvec{\Gamma }_1(s)y(s)\cdot \nabla (\Gamma _2(s)\varphi (s))]\right| _2\nonumber \\&\quad \le C(h)R^3(n+1)^{-1}\int _{nh}^t(t-s)^{-\frac{1}{2}}(s-nh)^{-\frac{1}{8}}ds\nonumber \\&\quad =C(h)R^3(n+1)^{-1}\int _{nh}^t(t-s)^{-\frac{1}{2}}(s-nh)^{\frac{1}{2}}(s-nh)^{-\frac{1}{2}}(s-nh)^{-\frac{1}{8}}ds\nonumber \\&\quad \le C(h)h^\frac{1}{2}R^3(n+1)^{-1}\int _{nh}^t(t-nh-s)^{-\frac{1}{2}}s^{-\frac{5}{8}}ds\nonumber \\&\quad =Ch^\frac{1}{2}R^3(n+1)^{-1}(t-nh)^{-\frac{1}{8}}B\left( \frac{3}{8},\frac{1}{2}\right) \nonumber \\&\quad =c_4(h)R^3(n+1)^{-1}(t-nh)^{-\frac{1}{8}},\ nh\le t\le (n+1)h. \end{aligned}$$
(60)

For the cubic term we use Eq. (17) with \(q=\frac{6}{5},p=2, |\alpha |=2\), then, as before, the generalized Hölder inequality for \(\frac{5}{6}=\frac{1}{3}+\frac{1}{2}\). We deduce that

$$\begin{aligned} \begin{aligned}&\left| D^\alpha e^{(t-s)S}\Delta (\varphi (s)-M(\varphi (s)))^3\right| _2\\&\quad \le 6c(t-s)^{-\frac{2}{3}}\left\{ \left| ((\varphi (s)-M(\varphi (s)))^2\Delta \varphi (s)\right| _\frac{6}{5}\right. \ \\&\quad \left. \ +\left| (\varphi (s)-M(\varphi (s)))|\nabla \varphi (s)|^2|\right| _\frac{6}{5}\right\} \\&\quad \le C(t-s)^{-\frac{2}{3}}[|\varphi (s)-M(\varphi (s))|_6^2|\Delta \varphi (s)|_2+|\nabla \varphi (s)|^2_6|\varphi (s)-M(\varphi (s))|_2]\\&\quad \text {(making use of the embedding }H^1\subset L^6\hbox { and } \hbox {(15))}\\&\quad \le C(t-s)^{-\frac{2}{3}}[|\nabla \varphi (s)|_2^2|\Delta \varphi (s)|_2+\Vert \nabla \varphi (s)\Vert _1^2|\nabla \varphi (s)|_2]\\&\quad \le C(t-s)^{-\frac{2}{3}}(n+1)^{-3}(s-nh)^{-\frac{3}{8}}\Vert \varphi \Vert ^3_{\mathcal {X}_n}\\&\quad =C(t-s)^{-\frac{3}{4}}(t-s)^\frac{1}{12}(n+1)^{-3}(s-nh)^{-\frac{3}{8}}\Vert \varphi \Vert ^3_{\mathcal {X}_n}\\&\quad \le C(h)(t-s)^{-\frac{3}{4}}(n+1)^{-3}(s-nh)^{-\frac{3}{8}}\Vert \varphi \Vert ^3_{\mathcal {X}_n},\ nh\le s\le t\le (n+1)h.\end{aligned}\nonumber \\\end{aligned}$$
(61)

So, \(\varphi \in B_{R,n}\) implies that

$$\begin{aligned} \begin{aligned}&\int _{nh}^t\left| D^\alpha e^{(t-s)S}\Delta (\varphi (s)-M(\varphi (s)))^3\right| _2ds\\&\quad \le C(h)B\left( \frac{5}{8},\frac{1}{4}\right) R^3(n+1)^{-1}(t-nh)^{-\frac{1}{8}}\\&\quad =c_5(h)R^3(n+1)^{-1}(t-nh)^{-\frac{1}{8}},\ nh\le t\le (n+1)h.\end{aligned}\end{aligned}$$
(62)

Similarly, with tricks as above, for the square term we have

$$\begin{aligned} \begin{aligned}&\int _{nh}^t\left| D^\alpha e^{(t-s)S}\Delta (\varphi (s)-M(\varphi (s)))^2\right| _2ds\\&\quad \le c_6(h)R^2(n+1)^{-1}(t-nh)^{-\frac{1}{8}},\ nh\le t\le (n+1)h.\end{aligned}\end{aligned}$$
(63)

Next, we deal with the term \(e^{(t-nh)S}\varphi _{nh}.\) Let \(\alpha \in \mathbb {N}^2\) with \(|\alpha |=1,2\) We have, by using Eq. (17) for \(q=\frac{4}{3}\) and \(p=2\), that

$$\begin{aligned}\left| D^\alpha e^{(t-nh)S}\varphi _{nh}\right| _2\le c (t-nh)^{-\frac{1}{8}}|D^\alpha \varphi _{nh}|_{\frac{4}{3}}\le c\left( 2,\frac{4}{3}\right) C_{2,\frac{4}{3}}|D^\alpha \varphi |_2.\end{aligned}$$

Here, \(C_{2,\frac{4}{3}}\) is the constant from the continuous embedding \(L^2\subset L^\frac{4}{3}.\) Therefore, for

$$\begin{aligned}C_1=c\left( 2,\frac{3}{2}\right) C_{2,\frac{3}{2}}\end{aligned}$$

we have

$$\begin{aligned} |D^\alpha e^{(t-nh) S}\varphi _{nh}|_2\le (n+1)C_1(n+1)^{-1}(t-nh)^{-\frac{1}{8}}|D^\alpha \varphi _{nh}|_{2},\ nh\le t\le (n+1)h.\nonumber \\\end{aligned}$$
(64)

Gathering together the relations Eqs. (54)–(64), we deduce that, there exist positive constants, depending only on h (and independent on n), \(C_1,C_2(h),C_3(h)\) such that

$$\begin{aligned} \begin{aligned}\Vert \mathcal {G}_n(\varphi )\Vert _{\mathcal {X}_n}\le C_1(n+1)\sum _{\alpha \in \mathbb {N}^2,|\alpha |=1,2}|D^\alpha \varphi _{nh}|_2+C_2(h)R^2+C_3(h)R^3,\ \forall \varphi \in B_{R,n}, \end{aligned}\nonumber \\\end{aligned}$$
(65)

\(n\in \left\{ 0,1,...,N-1\right\} .\)

In a similar manner as above, one may also prove that there exist constants \(C_{4}(h)>0,C_{5}(h)>0\), depending only on h, such that

$$\begin{aligned}{} & {} \Vert \mathcal {G}_n\varphi _1-\mathcal {G}_n\varphi _2\Vert _{\mathcal {X}_n}\le (C_{4}(h)R+C_{5}(h)R^2)\Vert \varphi _1-\varphi _2\Vert _{\mathcal {X}_n},\nonumber \\{} & {} \quad \forall \varphi _1,\varphi _2\in B_{R,n},n\in \left\{ 0,1,...,N-1\right\} .\end{aligned}$$
(66)

Thereby completing the proof. \(\square \)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munteanu, I. Well-posedness for the Cahn-Hilliard-Navier-Stokes Equations Perturbed by Gradient-Type Noise, in Two Dimensions. Appl Math Optim 89, 54 (2024). https://doi.org/10.1007/s00245-024-10121-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00245-024-10121-w

Keywords

Mathematics Subject Classification

Navigation