Skip to main content
Log in

On the physical rigidity of Frenkel-Gross connection

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We show that the Frenkel-Gross connection on \({\mathbb {G}}_m\) is physically rigid as \(\check{G}\)-connection, thus confirming the de Rham version of a conjecture of Heinloth-Ngô-Yun. The proof is based on the construction of the Hecke eigensheaf of a \(\check{G}\)-connection with only generic oper structure, using the localization of Weyl modules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. They work in the setting of \(\ell \)-adic sheaves.

  2. This proposition can be proved alternatively using Segal-Sugawara operators, see [23, Proposition 28.(i)].

  3. Note that we use \(d_i\)’s to denote fundamental degrees, while in loc. cit. \(d_i\)’s are exponents.

  4. This result is originally due to an unpublished work of Tsao-Hsien Chen.

  5. Although in [23] they use a potentially different set of generators \(S_{ij}\) of the center \({\mathfrak {Z}}\) and assumes G is a classical group, their argument in the case of \(d=h\) works for any set of generators \(S_{ij}\) and any simple algebraic group.

References

  1. Arinkin, D.: Irreducible connections admit generic oper structures. arXiv:1602.08989 (2016)

  2. Beilinson, A., Drinfeld, V.: Quantization of Hitchin’s integrable system and Hecke eigensheaves. (1997). https://www.math.uchicago.edu/mitya/langlands/hitchin/BD-hitchin.pdf

  3. Ben-Zvi, D., Frenkel, E.: Vertex algebras and algebraic curves, volume 88 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, second edition, (2004). ISBN 0-8218-3674-9

  4. Bloch, S., Esnault, H.: Local Fourier transforms and rigidity for \({\mathscr {D}}\)-modules. Asian J. Math. 8(4), 587–605 (2004)

    Article  MathSciNet  Google Scholar 

  5. Chen, T.-H.: Vinberg’s \(\theta \)-groups and rigid connections. Int. Math. Res. Not. IMRN 23, 7321–7343 (2017)

    MathSciNet  Google Scholar 

  6. Chen, T.-H., Kamgarpour, M.: Preservation of depth in the local geometric Langlands correspondence. Trans. Amer. Math. Soc. 369(2), 1345–1364 (2017)

    Article  MathSciNet  Google Scholar 

  7. Dettweiler, M., Reiter, S.: The classification of orthogonally rigid \(G_2\)-local systems and related differential operators. Trans. Amer. Math. Soc. 366(11), 5821–5851 (2014)

    Article  MathSciNet  Google Scholar 

  8. Feigin, B., Frenkel, E.: Affine Kac-Moody algebras at the critical level and Gelfand-Diki algebras., volume 16 of Infniteanalysis, Part A, B(Kyoto,1991), Adv.Ser.Math.Phys., pp. 197–215. WorldSci.Publ., RiverEdge, NJ, (1992)

  9. Feigin, B., Frenkel, E., Rybnikov, L.: On the endomorphisms of Weyl modules over affine Kac-Moody algebras at the critical level. Lett. Math. Phys. 88(1–3), 163–173 (2009). (ISSN 0377-9017)

    Article  MathSciNet  Google Scholar 

  10. Feigin, B., Frenkel, E., Rybnikov, L.: Opers with irregular singularity and spectra of the shift of argument subalgebra. Duke Math. J. 155(2), 337–363 (2010)

    Article  MathSciNet  Google Scholar 

  11. Feigin, B., Frenkel, E., Toledano Laredo, V.: Gaudin models with irregular singularities. Adv. Math. 223(3), 873–948 (2010)

    Article  MathSciNet  Google Scholar 

  12. Frenkel, E.: Affine algebras, Langlands duality and Bethe ansatz, pages 606–642. XIth International Congress of Mathematical Physics (Paris, 1994). Int. Press, Cambridge, MA (1995)

  13. Frenkel, E.: Langlands correspondence for loop groups. Cambridge Studies in Advanced Mathematics, vol. 103. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  14. Frenkel, E.: Lectures on the Langlands program and conformal field theory, pages 387–533. Frontiers in number theory, physics, and geometry. II. Springer, Berlin (2007b)

  15. Frenkel, E.: Ramifications of the geometric Langlands program, volume 1931 of Representation theory and complex analysis, pages 51–135. Springer, Berlin (2008)

  16. Frenkel, E., Gaitsgory, D.: Local geometric Langlands correspondence and affine Kac-Moody algebras, volume 253 of Progr. Math., Algebraic geometry and number theory, pp. 69–260. Birkhäuser Boston, Boston, MA (2006)

  17. Frenkel, E., Gaitsgory, D.: Weyl modules and opers without monodromy, volume 279 of Progr. Math., Arithmetic and geometry around quantization, pages 101–121. Birkhäuser Boston, Boston, MA (2010)

  18. Frenkel, E., Gross, B.: A rigid irregular connection on the projective line. Ann. Math. (2) 170(3), 1469–1512 (2009)

    Article  MathSciNet  Google Scholar 

  19. Heinloth, J., Ngô, B.C., Yun, Z.: Kloosterman sheaves for reductive groups. Ann. Math. 2(177), 241–310 (2013)

    Article  MathSciNet  Google Scholar 

  20. Kamgarpour, M., Sage, D.S.: A geometric analogue of a conjecture of Gross and Reeder. Amer. J. Math. 141(5), 1457–1476 (2019)

    Article  MathSciNet  Google Scholar 

  21. Kamgarpour, M., Sage, D.S.: Rigid connections on \({\mathbb{P} }^1\) via the Bruhat-Tits building. Proc. Lond. Math. Soc. (3) 122(3), 359–376 (2021)

    Article  MathSciNet  Google Scholar 

  22. Kamgarpour, M., Nam, G., Puskás, A.: Arithmetic geometry of character varieties with regular monodromy, i. (2023a)

  23. Kamgarpour, M., Xu, D., Yi, L.: Hypergeometric sheaves for classical groups via geometric Langlands. Trans. Amer. Math. Soc. 376(5), 3585–3640 (2023)

    Article  MathSciNet  Google Scholar 

  24. Katz, N.M.: Rigid local systems. Annals of Mathematics Studies, vol. 139. Princeton University Press, Princeton, NJ (1996)

    Google Scholar 

  25. Molev, A.I.: Sugawara operators for classical Lie algebras. Mathematical Surveys and Monographs, vol. 229. American Mathematical Society, Providence, RI (2018)

    Book  Google Scholar 

  26. Xu, D., Zhu, X.: Bessel \(F\)-isocrystals for reductive groups. Invent. Math. 227(3), 997–1092 (2022)

    Article  MathSciNet  Google Scholar 

  27. Yun, Z.: Rigidity in automorphic representations and local systems, pages 73–168. Current developments in mathematics 2013. Int. Press, Somerville, MA, (2014)

  28. Zhu, X.: Frenkel-Gross’ irregular connection and Heinloth-Ngô-Yun’s are the same. Selecta Math. (N.S.) 23(1), 245–274 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author thanks Alexander Beilinson, Tsao-Hsien Chen and Xinwen Zhu for very valuable discussions. The author particularly thanks Zhu for pointing out Lemma 4, and thanks Chen for suggesting the key reference [9].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingfei Yi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, L. On the physical rigidity of Frenkel-Gross connection. Sel. Math. New Ser. 30, 41 (2024). https://doi.org/10.1007/s00029-024-00931-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-024-00931-9

Keywords

Mathematics Subject Classification

Navigation