Skip to main content
Log in

Lie groupoids and logarithmic connections

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Using tools from the theory of Lie groupoids, we study the category of logarithmic flat connections on principal G-bundles, where G is a complex reductive structure group. Flat connections on the affine line with a logarithmic singularity at the origin are equivalent to representations of a groupoid associated to the exponentiated action of \(\mathbb {C}\). We show that such representations admit a canonical Jordan–Chevalley decomposition and may be linearized by converting the \({\mathbb {C}}\)-action to a \({\mathbb {C}}^{*}\)-action. We then apply these results to give a functorial classification. Flat connections on a complex manifold with logarithmic singularities along a hypersurface are equivalent to representations of a twisted fundamental groupoid. Using a Morita equivalence, whose construction is inspired by Deligne’s notion of paths with tangential basepoints, we prove a van Kampen type theorem for this groupoid. This allows us to show that the category of representations of the twisted fundamental groupoid can be localized to the normal bundle of the hypersurface. As a result, we obtain a functorial Riemann–Hilbert correspondence for logarithmic connections in terms of generalized monodromy data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

My manuscript has no associated data.

References

  1. Babbitt, D., Varadarajan, V.: Formal reduction theory of meromorphic differential equations: a group theoretic view. Pac. J. Math. 109(1), 1–80 (1983)

    Article  MathSciNet  Google Scholar 

  2. Bischoff, F.: Normal forms and moduli stacks for logarithmic flat connections (2022). arXiv preprint arXiv:2209.00631

  3. Bischoff, F.: Castling equivalence for logarithmic flat connections (2023). arXiv preprint arXiv:2306.17802

  4. Bischoff, F.: The derived moduli stack of logarithmic flat connections (2023). arXiv preprint arXiv:2301.00962

  5. Boalch, P.P.: Riemann–Hilbert for tame complex parahoric connections. Transform. Groups 16(1), 27–50 (2011)

    Article  MathSciNet  Google Scholar 

  6. Borel, A.: Linear Algebraic Groups, vol. 126. Springer, Berlin (2012)

    Google Scholar 

  7. Brown, R.: Groupoids and van Kampen’s theorem. Proc. Lond. Math. Soc. 3(3), 385–401 (1967)

    Article  MathSciNet  Google Scholar 

  8. Brown, R., Salleh, A.R.: A van Kampen theorem for unions of non-connected spaces. Arch. Math. 42(1), 85–88 (1984)

    Article  MathSciNet  Google Scholar 

  9. Bruhat, F., Tits, J.: Groupes réductifs sur un corps local. Inst. Hautes Études Sci. Publ. Math. 41, 5–251 (1972)

    Article  Google Scholar 

  10. Connes, A.: Noncommutative Geometry. Academic Press Inc, San Diego (1994)

    Google Scholar 

  11. Crainic, M., Fernandes, R.L.: Integrability of Lie brackets. Ann. Math. 157, 575–620 (2003)

    Article  MathSciNet  Google Scholar 

  12. Crainic, M., Fernandes, R.L.: Lectures on integrability of Lie brackets. Geom. Topol. Monogr 17, 1–107 (2011)

    MathSciNet  Google Scholar 

  13. Crainic, M., Struchiner, I.: On the linearization theorem for proper Lie groupoids. Annales scientifiques de l’École Normale Supérieure 46, 723–746 (2013)

    Article  MathSciNet  Google Scholar 

  14. Debord, C.: Holonomy groupoids of singular foliations. J. Differ. Geometry 58(3), 467–500 (2001)

    Article  MathSciNet  Google Scholar 

  15. del Hoyo, M., Garcia, D.L.: On Hausdorff integrations of Lie algebroids. Monatshefte für Mathematik 194, 811–833 (2021)

  16. Deligne, P.: Le groupe fondamental de la droite projective moins trois points. In: Galois Groups over \(\mathbb{Q} \), pp. 79–297. Springer, Berlin (1989)

  17. Deligne, P.: Équations différentielles à points singuliers réguliers, vol. 163. Springer, Berlin (2006)

    Google Scholar 

  18. Esnault, H., Viehweg, E.: Logarithmic de Rham complexes and vanishing theorems. Invent. Math. 86(1), 161–194 (1986)

    Article  MathSciNet  Google Scholar 

  19. Fulton, W.: Intersection Theory, vol. 2. Springer, Berlin (2013)

    Google Scholar 

  20. Galligo, A., Granger, M., Maisonobe, P.: \({\mathscr {D}}\)-modules et faisceaux pervers dont le support singulier est un croisement normal. Ann. Inst. Fourier (Grenoble) 35(1), 1–48 (1985)

    Article  MathSciNet  Google Scholar 

  21. Galligo, A., Granger, M., Maisonobe, Ph.: \({\mathscr {D}}\)-modules et faisceaux pervers dont le support singulier est un croisement normal. II. Number 130, pp. 240–259. 1985. Differential systems and singularities (Luminy, 1983)

  22. Gantmacher, F.R.: Theory of Matrices, Vol. I & II. Chelsea, New York (1959)

  23. Gualtieri, M., Li, S.: Symplectic groupoids of log symplectic manifolds. Int. Math. Res. Not. 2014(11), 3022–3074 (2014)

    Article  MathSciNet  Google Scholar 

  24. Gualtieri, M., Li, S., Pym, B.: The Stokes groupoids. Journal für die reine und angewandte Mathematik (Crelles Journal) 2018(739), 81–119 (2018)

    Article  MathSciNet  Google Scholar 

  25. Haefliger, A.: Groupoides d’holonomie et classifiants. Structures transverses des feuilletages. Astérisque 116, 70–97 (1984)

    Google Scholar 

  26. Herrero, A.F.: On the quasicompactness of the moduli stack of logarithmic G-connections over a curve (2020). arXiv preprint arXiv:2002.11832

  27. Hilsum, M., Skandalis, G.: Morphismes K-orientés d’espaces de feuilles et fonctorialité en théorie de Kasparov (d’après une conjecture d’A. Connes). Annales scientifiques de l’École Normale Supérieure 20, 325–390 (1987)

    Article  MathSciNet  Google Scholar 

  28. Hukuhara, M.: Sur les propriétés asymptotiques des solutions d’un système d’équations différentielles linéaires contenant un paramètre. Mem. Fac. Engrg. Kyushu Imp. Univ. 8, 249–280 (1937)

    Google Scholar 

  29. Hukuhara, M.: Théorèmes fondamentaux de la théorie des équations différentielles ordinaires. II. Mem. Fac. Sci. Kyūsyū Imp. Univ. A 2, 1–25 (1941)

  30. Humphreys, J.E.: Linear Algebraic Groups, vol. 21. Springer, Berlin (2012)

    Google Scholar 

  31. Kamgarpour, M., Weatherhog, S.: Jordan decomposition for formal \(G\)-connections. Grad. J. Math. 5(2), 111–121 (2020)

    MathSciNet  Google Scholar 

  32. Kashiwara, M.: The Riemann–Hilbert problem for holonomic systems. Publ. Res. Inst. Math. Sci. 20(2), 319–365 (1984)

    Article  MathSciNet  Google Scholar 

  33. Kashiwara, M., Schapira, P.: Sheaves on manifolds, volume 292 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1994). With a chapter in French by Christian Houzel, Corrected reprint of the 1990 original

  34. Kleptsyn, V.A., Rabinovich, B.A.: Analytic classification of Fuchsian singular points. Math. Notes 76(3–4), 348–357 (2004)

    Article  MathSciNet  Google Scholar 

  35. Levelt, A.H.M.: Hypergeometric functions I–IV. Nederl. Akad. Wetensch. Proc. Ser. A, vol. 64, pp. 361–403 (1961)

  36. Levelt, A.H.M.: Hypergeometric functions II. Indagationes Mathematicae (Proceedings), vol. 64, pp. 373–385. Elsevier, New York (1961)

  37. Levelt, A.H.M.: Jordan decomposition for a class of singular differential operators. Ark. Mat. 13(1–2), 1–27 (1975)

    Article  MathSciNet  Google Scholar 

  38. Mackenzie, K.C.H.: General Theory of Lie Groupoids and Lie Algebroids, vol. 213. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  39. Mackenzie, K.C.H., Xu, P.: Integration of Lie bialgebroids. Topology 39(3), 445–467 (2000)

    Article  MathSciNet  Google Scholar 

  40. Moerdijk, I., Mrčun, J.: On integrability of infinitesimal actions. Am. J. Math. 124(3), 567–593 (2002)

    Article  MathSciNet  Google Scholar 

  41. Moerdijk, I., Mrčun, J.: Introduction to Foliations and Lie Groupoids. Cambridge Studies in Advanced Mathematics, vol. 91. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  42. Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory, vol. 34. Springer, Berlin (1994)

    Book  Google Scholar 

  43. Nitsure, N.: Moduli of semistable logarithmic connections. J. Am. Math. Soc. 6(3), 597–609 (1993)

    Article  MathSciNet  Google Scholar 

  44. Ogus, A.: On the logarithmic Riemann–Hilbert correspondence. Doc. Math. 655 (2003)

  45. Pradines, J.: Morphisms between spaces of leaves viewed as fractions. Cahiers Topologie Géom. Différentielle Catég 30(3), 229–246 (1989)

    MathSciNet  Google Scholar 

  46. Saito, K.: Theory of logarithmic differential forms and logarithmic vector fields. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 27(2), 265–291 (1980)

    MathSciNet  Google Scholar 

  47. Simpson, C.T.: Harmonic bundles on noncompact curves. J. Am. Math. Soc. 3(3), 713–770 (1990)

    Article  MathSciNet  Google Scholar 

  48. Simpson, C.T.: Moduli of representations of the fundamental group of a smooth projective variety. I. Inst. Hautes Études Sci. Publ. Math. 79, 47–129 (1994)

    Article  MathSciNet  Google Scholar 

  49. Singh, A.: Moduli space of logarithmic connections singular over a finite subset of a compact Riemann surface. Math. Res. Lett. 28(3), 863–887 (2021)

    Article  MathSciNet  Google Scholar 

  50. Tortella, P.: Representations of Atiyah algebroids and logarithmic connections. Int. Math. Res. Not. 2017(1), 29–46 (2016)

    MathSciNet  Google Scholar 

  51. Turrittin, H.: Convergent solutions of ordinary linear homogeneous differential equations in the neighborhood of an irregular singular point. Acta Math. 93, 27–66 (1955)

    Article  MathSciNet  Google Scholar 

  52. Weinstein, A.: Linearization of regular proper groupoids. J. Inst. Math. Jussieu 1(3), 493–511 (2002)

    Article  MathSciNet  Google Scholar 

  53. Weinstein, A.: Blowing up realizations of Heisenberg–Poisson manifolds. Bull. Sci. Math. 113(4), 381–406 (1989)

    MathSciNet  Google Scholar 

  54. Zung, N.T.: Proper groupoids and momentum maps: linearization, affinity, and convexity. Annales Scientifiques de l’École Normale Supérieure 39, 841–869 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I began this project at the start of my Ph.D. studies in 2015 under the supervision of M. Gualtieri, and several ideas were worked out during a visit to Paris in 2016 where I had the opportunity to talk with P. Boalch. In the end, it took the confinement imposed by the coronavirus pandemic to force me to finalize the details. Many of the ideas of this project were developed in collaboration with M. Gualtieri, in particular the work in the final section. I would like to thank M. Gualtieri, P. Boalch, and B. Pym for many useful discussions. This work was supported by an NSERC postdoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis Bischoff.

Ethics declarations

Conflict of interest

The corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bischoff, F. Lie groupoids and logarithmic connections. Sel. Math. New Ser. 30, 44 (2024). https://doi.org/10.1007/s00029-024-00929-3

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-024-00929-3

Keywords

Mathematics Subject Classification

Navigation