Skip to main content
Log in

The Newton polytope and Lorentzian property of chromatic symmetric functions

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Chromatic symmetric functions are well-studied symmetric functions in algebraic combinatorics that generalize the chromatic polynomial and are related to Hessenberg varieties and diagonal harmonics. Motivated by the Stanley–Stembridge conjecture, we show that the allowable coloring weights for indifference graphs of Dyck paths are the lattice points of a permutahedron \(\mathcal {P}_\lambda \), and we give a formula for the dominant weight \(\lambda \). Furthermore, we conjecture that such chromatic symmetric functions are Lorentzian, a property introduced by Brändén and Huh as a bridge between discrete convex analysis and concavity properties in combinatorics, and we prove this conjecture for abelian Dyck paths. We extend our results on the Newton polytope to incomparability graphs of \((3+1)\)-free posets, and we give a number of conjectures and results stemming from our work, including results on the complexity of computing the coefficients and relations with the \(\zeta \) map from diagonal harmonics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The strongest version of Mason’s conjecture was also proved independently and simultaneously in [7].

  2. In [30] the authors use the letter \(c_i\) corresponding to clones that correspond to consecutive copies of the letter \(v_i\) in the part listing.

  3. A previous version of the current paper incorrectly restated the definition of the canonical part listing from Guay-Paquet et al. [30].

  4. This conjecture has been proved independently by Gélinas–Segovia–Thomas [27] and by Fang [22].

  5. There are no 3-antichains of partitions of \(n<12\) in dominance order with one partition being a convex combination of the other two.

References

  1. Abreu, A., Nigro, A.: Chromatic symmetric functions from the modular law. J. Combin. Theory Ser. A 180, 105407 (2021)

    Article  MathSciNet  Google Scholar 

  2. Adve, A., Robichaux, C., Yong, A.: An efficient algorithm for deciding vanishing of Schubert polynomial coefficients. Adv. Math. 383, 107669 (2021)

    Article  MathSciNet  Google Scholar 

  3. Adve, A., Robichaux, C., Yong, A.: Computational complexity, Newton polytopes, and Schubert polynomials. Sém. Lothar. Combin. 82B, 52 (2020)

    MathSciNet  Google Scholar 

  4. Aguiar, M., Bergeron, N., Sottile, F.: Combinatorial Hopf algebras and generalized Dehn–Sommerville relations. Compos. Math. 142(1), 1–30 (2006)

    Article  MathSciNet  Google Scholar 

  5. Alexandersson, P., Sulzgruber, R.: A combinatorial expansion of vertical-strip LLT polynomials in the basis of elementary symmetric functions. Adv. Math. 400, 108256 (2021)

    Article  MathSciNet  Google Scholar 

  6. Alexandersson, P., Panova, G.: LLT polynomials, chromatic quasisymmetric functions and graphs with cycles. Discrete Math. 341(12), 3453–3482 (2018)

    Article  MathSciNet  Google Scholar 

  7. Anari, N., Liu, K., Gharan, S.O., Vinzant, C.: Log-concave polynomials III: mason’s ultra-log-concavity conjecture for independent sets of matroids. arXiv preprint arXiv:1811.01600 (2018)

  8. Bayer, M., Goeckner, B., Hong, S.J., McAllister, T., Olsen, M., Pinckney, C., Vega, J., Yip, M.: Lattice polytopes from Schur and symmetric Grothendieck polynomials. Electron. J. Combin. 28(2), #P2.45 (2020)

  9. Beck, M., Robins, S.: Computing the continuous discretely. Undergraduate Texts in Mathematics, 2nd edn. Springer, New York (2015)

  10. Birkhoff, G.D.: A determinant formula for the number of ways of coloring a map. Ann. Math. (2) 14(1–4), 42–46 (1912/13)

  11. Borcea, J., Brändén, P.: The Lee–Yang and Pólya–Schur programs. I. Linear operators preserving stability. Invent. Math. 177(3), 541–569 (2009)

    Article  MathSciNet  Google Scholar 

  12. Borcea, J., Brändén, P.: The Lee–Yang and Pólya–Schur programs. II. Theory of stable polynomials and applications. Commun. Pure Appl. Math. 62(12), 1595–1631 (2009)

    Article  Google Scholar 

  13. Brändén, P., Huh, J.: Lorentzian polynomials. Ann. Math. (2) 192(3), 821–891 (2020)

    Article  MathSciNet  Google Scholar 

  14. Braun, B.: Unimodality problems in Ehrhart theory, Recent trends in combinatorics. IMA Vol. Math. Appl. 159, 687–711 (2016)

    Google Scholar 

  15. Brosnan, P., Chow, T.Y.: Unit interval orders and the dot action on the cohomology of regular semisimple Hessenberg varieties. Adv. Math. 329, 955–1001 (2018)

    Article  MathSciNet  Google Scholar 

  16. Carlsson, E., Mellit, A.: A proof of the shuffle conjecture. J. Am. Math. Soc. 31(3), 661–697 (2018)

    Article  MathSciNet  Google Scholar 

  17. Castillo, F., Cid-Ruiz, Y., Mohammadi, F., Montaño, J.: Double Schubert polynomials do have saturated Newton polytopes. Forum Math. Sigma 11, e100 (2023)

    Article  MathSciNet  Google Scholar 

  18. Chandler, A., Sazdanovic, R., Stella, S., Yip, M.: On the strength of chromatic symmetric homology for graphs. Adv. Appl. Math. 150, 102559 (2023)

    Article  MathSciNet  Google Scholar 

  19. Chow, T.: Note on the Schur-expansion of \(X_G\) for indifference graphs \(G\) (2015). link

  20. Colmenarejo, L., Morales, A.H., Panova, G.: Chromatic symmetric functions of Dyck paths and \(q\)-rook theory. Eur. J. Combin. 107, 103595 (2023)

    Article  MathSciNet  Google Scholar 

  21. Diekert, V., Rozenberg, G.: The Book of Traces. World Scientific Publishing Co. Inc., River Edge (1995)

    Book  Google Scholar 

  22. Fang, W.: Bijective proof of a conjecture on unit interval posets. DMTCS 26(2), #2 (2024)

  23. Fenn, M., Sommers, E.: A transitivity result for ad-nilpotent ideals in type A. Indagat. Math. 32(6), 1175–1189 (2021)

  24. Fink, A., Mészáros, K., St. Dizier, A.: Schubert polynomials as integer point transforms of generalized permutahedra. Adv. Math. 332, 465–475 (2018)

    Article  MathSciNet  Google Scholar 

  25. Foley, A.M., Hoàng, C.T., Merkel, O.D.: Classes of graphs with \(e\)-positive chromatic symmetric function. Electron. J. Combin. 26(3), 3.51 (2019)

    Article  MathSciNet  Google Scholar 

  26. Gasharov, V.: Incomparability graphs of \((3+1)\)-free posets are \(s\)-positive. Discrete Math. 157, 211–215 (1996)

    Article  MathSciNet  Google Scholar 

  27. Gélinas, F., Segovia, A., Thomas, H.: Proof of a conjecture of Matherne, Morales, and Selover on encodings of unit interval orders. arXiv preprint arXiv:2212.12171 (2022)

  28. Gerstenhaber, M.: Dominance over the classical groups. Ann. Math. 2(74), 532–569 (1961)

    Article  MathSciNet  Google Scholar 

  29. Guay-Paquet, M.: A modular relation for the chromatic symmetric functions of \((3+1)\)-free posets. arXiv preprint arXiv:1306.2400 (2013)

  30. Guay-Paquet, M., Morales, A.H., Rowland, E.: Structure and enumeration of \((3+1)\)-free posets. Ann. Combin. 18(4), 645–674 (2014)

    Article  MathSciNet  Google Scholar 

  31. Haglund, J., Ono, K., Wagner, D.G.: Theorems and conjectures involving rook polynomials with only real zeros. Topics in Number Theory (University Park, PA, 1997), Math. Appl., vol. 467, pp. 207–221. Kluwer Acad. Publ., Dordrecht (1999)

  32. Haglund, J., Wilson, A.T.: Macdonald polynomials and chromatic quasisymmetric functions. Electron. J. Combin. 27(3), #P3.37 (2020)

  33. Haglund, J.: Further investigations involving rook polynomials with only real zeros. Eur. J. Combin. 21(8), 1017–1037 (2000)

    Article  MathSciNet  Google Scholar 

  34. Haglund, J.: The \(q\),\(t\)-Catalan Numbers and the Space of Diagonal Harmonics, University Lecture Series, vol. 41. American Mathematical Society, Providence (2008)

    Google Scholar 

  35. Harada, M., Precup, M.E.: The cohomology of abelian Hessenberg varieties and the Stanley–Stembridge conjecture. Algebr. Combin. 2(6), 1059–1108 (2019)

    Article  MathSciNet  Google Scholar 

  36. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge Mathematical Library, Cambridge University Press, Cambridge (1988). Reprint of the 1952 edition

  37. Huh, J.: Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs. J. Am. Math. Soc. 25(3), 907–927 (2012)

    Article  MathSciNet  Google Scholar 

  38. Huh, J., Matherne, J.P., Mészáros, K., St. Dizier, A.: Logarithmic concavity of Schur and related polynomials. Trans. Am. Math. Soc. 375(6), 4411–4427 (2022)

    Article  MathSciNet  Google Scholar 

  39. Mason, J.H.: Matroids: unimodal conjectures and Motzkin’s theorem. In: Proceedings Combinatorics, Proc. Conf. Combinatorial Math., pp. 207–220. Math. Inst., Oxford (1972)

  40. Kaplansky, I., Riordan, J.: The problem of the rooks and its applications. Duke Math. J. 13(2), 259–268 (1946)

    Article  MathSciNet  Google Scholar 

  41. Lewis, J.B., Zhang, Y.X.: Enumeration of graded \(( {3}+ {1})\)-avoiding posets. J. Combin. Theory Ser. A 120(6), 1305–1327 (2013)

    Article  MathSciNet  Google Scholar 

  42. Macdonald, I.G.: Symmetric functions and Hall polynomials. Oxford Classic Texts in the Physical Sciences, 2nd edn. The Clarendon Press, Oxford University Press, New York (2015)

  43. McDonald, L.M., Moffatt, I.: On the Potts model partition function in an external field. J. Stat. Phys. 146(6), 1288–1302 (2012)

    Article  MathSciNet  Google Scholar 

  44. Monical, C., Tokcan, N., Yong, A.: Newton polytopes in algebraic combinatorics. Selecta Math. (N.S.) 25(5), 66 (2019)

    Article  MathSciNet  Google Scholar 

  45. Monical, C.: Polynomials in algebraic combinatorics, Ph.D. Thesis (2018), University of Illinois at Urbana-Champaign

  46. Murota, K.: Discrete Convex Analysis, SIAM Monographs on Discrete Mathematics and Applications, Society for Industrial and Applied Mathematics. SIAM, Philadelphia (2003)

    Google Scholar 

  47. Orellana, R., Scott, G.: Graphs with equal chromatic symmetric functions. Discrete Math. 320, 1–14 (2014)

    Article  MathSciNet  Google Scholar 

  48. Postnikov, A.: Permutohedra, associahedra, and beyond. Int. Math. Res. Not. 2009(6), 1026–1106 (2009)

    Article  MathSciNet  Google Scholar 

  49. Rado, R.: An inequality. J. Lond. Math. Soc. 27, 1–6 (1952)

    Article  Google Scholar 

  50. Rubey, M., Stump, C., et al.: FindStat—the combinatorial statistics database. http://www.FindStat.org. Accessed 28 Feb 2024

  51. Sazdanovic, R., Yip, M.: A categorification of the chromatic symmetric function. J. Combin. Theory, Ser. A 154, 218–246 (2018)

    Article  MathSciNet  Google Scholar 

  52. Schrijver, A.: Combinatorial optimization. Polyhedra and efficiency. Vol. A, Algorithms and Combinatorics, Paths, Flows, Matchings, Chapters 1–38, vol. 24, Springer, Berlin (2003)

  53. Shareshian, J., Wachs, M.L.: Chromatic quasisymmetric functions. Adv. Math. 295, 497–551 (2016)

    Article  MathSciNet  Google Scholar 

  54. Stanley, R.P.: Enumerative combinatorics. Volume 1, Cambridge Studies in Advanced Mathematics, vol. 49, 2nd edn. Cambridge University Press, Cambridge (2012)

  55. Stanley, R.P.: Enumerative combinatorics. Volume 2, Cambridge Studies in Advanced Mathematics, vol. 62. Cambridge University Press, Cambridge (1999)

  56. Stanley, R.P.: Graph colorings and related symmetric functions: ideas and applications: a description of results, interesting applications, & notable open problems. Discrete Math. 193, 267–286 (1998). Selected papers in honor of Adriano Garsia (Taormina, 1994)

  57. Stanley, R.P.: symmetric function generalization of the chromatic polynomial of a graph. Adv. Math. 111(1), 166–194 (1995)

    Article  MathSciNet  Google Scholar 

  58. Stanley, R.P.: Catalan Numbers. Cambridge University Press, New York (2015)

    Book  Google Scholar 

  59. Stanley, R.P., Stembridge, J.R.: On immanants of Jacobi–Trudi matrices and permutations with restricted position. J. Combin. Theory Ser. A 62(2), 261–279 (1993)

    Article  MathSciNet  Google Scholar 

  60. The Sage-Combinat community: Sage-Combinat: enhancing Sage as a toolbox for computer exploration in algebraic combinatorics, (2022)

  61. Valiant, L.G.: The complexity of computing the permanent. Theoret. Comput. Sci. 8(2), 189–201 (1979)

    Article  MathSciNet  Google Scholar 

  62. Wagner, D.G.: Multivariate stable polynomials: theory and applications. Bull. Am. Math. Soc. (N.S.) 48(1), 53–84 (2011)

    Article  MathSciNet  Google Scholar 

  63. White, D.E.: Monotonicity and unimodality of the pattern inventory. Adv. Math. 38(1), 101–108 (1980)

    Article  MathSciNet  Google Scholar 

  64. Whitney, H.: The coloring of graphs. Ann. Math. (2) 33(4), 688–718 (1932)

    Article  MathSciNet  Google Scholar 

  65. Zhang, F.: The Schur complement and its applications, Numerical Methods and Algorithms, vol. 4. Springer, New York (2005)

    Google Scholar 

Download references

Acknowledgements

This project started during a stay of the second named author at Institut Mittag-Leffler in Djursholm, Sweden in the course of the program on Algebraic and Enumerative Combinatorics in Spring 2020. We thankfully acknowledge the support of the Swedish Research Council under Grant No. 2016-06596, and thank Institut Mittag-Leffler for its hospitality. We thank Margaret Bayer, Petter Brändén, Tim Chow, Laura Colmenarejo, Benedek Dombos, Félix Gélinas, Mathieu Guay-Paquet, Álvaro Gutiérrez, Jim Haglund, Chris Hanusa, June Huh, Khanh Nguyen Duc, Greta Panova, Adrien Segovia, Mark Skandera, Eric Sommers, Hugh Thomas, and Andrew Tymothy Wilson for helpful comments. We also would like to thank the anonymous referee for edits and suggestions that improved the manuscript. The first named author was partially supported by Max Planck Institute for Mathematics (MPIM), the Hausdorff Research Institute for Mathematics (HIM), and the Deutsche Forschungsgemeinschaft (DFG) under Germany’s Excellence Strategy—GZ 2047/1, Projekt-ID 390685813. The second and third named authors were partially supported by NSF Grants DMS-1855536 and DMS-2154019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro H. Morales.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matherne, J.P., Morales, A.H. & Selover, J. The Newton polytope and Lorentzian property of chromatic symmetric functions. Sel. Math. New Ser. 30, 42 (2024). https://doi.org/10.1007/s00029-024-00928-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-024-00928-4

Mathematics Subject Classification

Navigation