Skip to main content
Log in

Newton polytopes in algebraic combinatorics

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

A polynomial has saturated Newton polytope (SNP) if every lattice point of the convex hull of its exponent vectors corresponds to a monomial. We compile instances of SNP in algebraic combinatorics (some with proofs, others conjecturally): skew Schur polynomials; symmetric polynomials associated to reduced words, Redfield–Pólya theory, Witt vectors, and totally nonnegative matrices; resultants; discriminants (up to quartics); Macdonald polynomials; key polynomials; Demazure atoms; Schubert polynomials; and Grothendieck polynomials, among others. Our principal construction is the Schubitope. For any subset of \([n]^2\), we describe it by linear inequalities. This generalized permutahedron conjecturally has positive Ehrhart polynomial. We conjecture it describes the Newton polytope of Schubert and key polynomials. We also define dominance order on permutations and study its poset-theoretic properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Adve, A., Robichaux, C., Yong, A.: Complexity, combinatorial positivity, and Newton polytopes, preprint 2018. arXiv:1810.10361

  2. Agnarsson, G., Morris, W.D.: On Minkowski sums of simplices. Ann. Comb. 13, 271 (2009)

    Article  MathSciNet  Google Scholar 

  3. Assaf, S.: Combinatorial models for Schubert polynomials, preprint, 2017. arXiv:1703.00088

  4. Avella-Alaminosa, D., Vallejo, E.: Kronecker products and the RSK correspondence. Discrete Math. 312(8), 1476–1486 (2012)

    Article  MathSciNet  Google Scholar 

  5. Ballantine, C.: Powers of the Vandermonde determinant, Schur Functions, and recursive formulas. In: Proceedings of the Conference on Formal Power Series and Algebraic Combinatorics (FPSAC) DMTCS Proceedings of FPSAC ’11, pp. 87–98 (2011)

  6. Barvinok, A.: Matrices with prescribed row and column sums. Linear Algebra Appl. 436, 820–844 (2012)

    Article  MathSciNet  Google Scholar 

  7. Beck, M., Robins, S.: Computing the Continuous Discretely. Springer, Berlin (2007)

    MATH  Google Scholar 

  8. Billey, S., Jockush, W., Stanley, R.: Some combinatorial properties of Schubert polynomials. J. Algebr. Comb. 2(4), 345–374 (1993)

    Article  MathSciNet  Google Scholar 

  9. Castillo, F., Liu, F.: Berline–Vergne valuation and generalized permutohedra, preprint, 2015. arXiv:1509.07884

  10. Croitoru, D.: Mixed Volumes of Hypersimplices, Root Systems and Shifted Young Tableaux, MIT PhD thesis (2010)

  11. Doran IV, W.M.: A proof of Reutenauer’s \(-q_{(n)}\) conjecture. J. Comb. Theory Ser. A 74, 342–344 (1996)

    Article  MathSciNet  Google Scholar 

  12. Ehrhart, E.: Sur les polyèdres rationnels homothétiques à \(n\) dimensions. C. R. Acad. Sci. Paris 254, 616–618 (1962)

    MathSciNet  MATH  Google Scholar 

  13. Escobar, L., Yong, A.: Newton polytopes and symmetric Grothendieck polynomials. C. R. Math. Acad. Sci. Paris 355(8), 831–834 (2017)

    Article  MathSciNet  Google Scholar 

  14. Fink, A., Mészáros, K., Dizier, A.S.: Schubert polynomials as integer point transforms of generalized permutahedra. Adv. Math. 332, 465–475 (2018)

    Article  MathSciNet  Google Scholar 

  15. Fomin, S., Greene, C.: Noncommutative Schur functions and their applications. Discrete Math. 193, 179–200 (1998). Selected papers in honor of Adriano Garsia (Taormina, 1994)

    Article  MathSciNet  Google Scholar 

  16. Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Newton polytopes of the classical resultant and discriminant. Adv. Math. 84, 237–254 (1990)

    Article  MathSciNet  Google Scholar 

  17. Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants and Multi-Dimensional Determinants. Birkhäuser, Boston (1994)

    Book  Google Scholar 

  18. Haglund, J., Haiman, M., Loehr, N.: A combinatorial formula for Macdonald polynomials. J. Am. Math. Soc. 18, 735–761 (2005)

    Article  MathSciNet  Google Scholar 

  19. Haglund, J., Haiman, M., Loehr, N.: A combinatorial formula for non-symmetric Macdonald polynomials Amer. J. Math. 130(2), 359–383 (2008)

    Article  MathSciNet  Google Scholar 

  20. Haglund, J., Luoto, K., Mason, S., van Willigenburg, S.: Quasisymmetric Schur functions. J. Combin. Theory Ser. A 118, 463–490

    Article  MathSciNet  Google Scholar 

  21. Ion, B.: Nonsymmetric Macdonald polynomials and Demazure characters. Duke Math. J. 116, 299–318 (2003)

    Article  MathSciNet  Google Scholar 

  22. Kohnert, A.: Weintrauben, polynome, tableaux. Bayreuth Math. Schr. 38, 1–97 (1990). k-Schur Functions and Affine Schubert Calculus

    MathSciNet  MATH  Google Scholar 

  23. Lam, T., Lapointe, L., Morse, J., Schilling, A., Shimozono, M., Zabrocki, M.: \(k\)-Schur Functions and Affine Schubert Calculus, Fields Institute Monographs, vol. 33. Springer, New York (2014)

    MATH  Google Scholar 

  24. Lascoux, A.: Transition on Grothendieck Polynomials, Physics and Combinatorics, 2000 (Nagoya), pp. 164–179. World Scientific Publishing, River Edge (2001)

  25. Lascoux, A., Leclerc, B., Thibon, J.Y.: Ribbon tableaux, Hall–Littlewood functions, quantum affine algebras, and unipotent varieties. J. Math. Phys. 38(2), 1041–1068 (1997)

    Article  MathSciNet  Google Scholar 

  26. Lascoux, A., Schützenberger, M.-P.: Polynômes de Schubert. C. R. Acad. Sci. Paris Sér. I Math. 294, 447–450 (1982)

    MathSciNet  MATH  Google Scholar 

  27. Lascoux, A., Schützenberger, M.-P.: Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux. C. R. Acad. Sci. Paris 295, 629–633 (1982)

    MathSciNet  MATH  Google Scholar 

  28. Macdonald, I.G.: A new class of symmetric functions., Actes du 20e Séminaire Lotharingien, vol. 372/S-20, pp. 131–171. Publications I.R.M.A, Strasbourg (1988)

  29. Manivel, L.: Symmetric Functions, Schubert Polynomials and Degeneracy Loci. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  30. Mason, S.: An explicit construction of type \(A\) Demazure atoms. J. Algebr. Combin. 29, 295–313 (2009)

    Article  MathSciNet  Google Scholar 

  31. Mészráros, K., Dizier, A. St.: Generalized permutahedra to Grothendieck polynomials via flow polytopes, preprint, 2017. arXiv:1705.02418

  32. Monical, C.: Set-Valued Skyline Fillings, preprint, 2016. arXiv:1611.08777

  33. Postnikov, A.: Permutohedra, associahedra, and beyond (2005). arXiv: math.CO/0507163v1

  34. Pun, A.: A deposition of the product of Demazure atoms and Demazure characters, preprint, 2016. arXiv:1606.02291

  35. Rado, R.: An inequality. J. Lond. Math. Soc. 27, 1–6 (1952)

    Article  Google Scholar 

  36. Reiner, V., Shimozono, M., Reiner, V., Shimozono, M.: Key polynomials and a flagged Littlewood–Richardson rule. J. Comb. Theory. Ser. A. 70, 107–143 (1995)

    Article  MathSciNet  Google Scholar 

  37. Reutenauer, C.: On symmetric functions, related Witt vectors, and the free Lie algebra. Adv. Math. 110, 234–246 (1995)

    Article  MathSciNet  Google Scholar 

  38. Sahi, S., Some Properties of Koornwinder Polynomials, q-Series from a Contemporary Perspective, (South Hadley, MA, 1998), Contemporary Mathematics, vol. 254. American Mathematical Society, Providence, pp. 395–411 (2000)

  39. Scharf, T., Thibon, J., Wybourne, B.G.: Powers of the Vandermonde determinant and the quantum Hall effect. J. Phys. A Math. Gen. 27, 4211–4219 (1994)

    Article  MathSciNet  Google Scholar 

  40. Stanley, R.P.: On the number of reduced decompositions of elements of coxeter groups. Eur. J. Comb. 5(4), 359–372 (1984)

    Article  MathSciNet  Google Scholar 

  41. Stanley, R.P.: A symmetric function generalization of the chromatic polynomial of a graph. Adv. Math. 111, 166–194 (1995)

    Article  MathSciNet  Google Scholar 

  42. Stanley, R.P.: Enumerative Combinatorics (with an appendix by S. Fomin), vol. 2. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  43. Stembridge, J.R.: Shifted tableaux and the projective representation of symmetric groups. Adv. Math. 74, 87–134 (1989)

    Article  MathSciNet  Google Scholar 

  44. Stembridge, J.R.: Immanants of totally positive matrices are nonnegative. Bull. Lond. Math. Soc. 23(5), 422–428 (1991)

    Article  MathSciNet  Google Scholar 

  45. Sturmfels, B.: Polynomial equations and convex polytopes. Am. Math. Mon. 105(10), 907–922 (1998)

    Article  MathSciNet  Google Scholar 

  46. Vallejo, E.: Plane partitions and characters of the symmetric group. J. Algebr. Combin. 11, 79–88 (2000)

    Article  MathSciNet  Google Scholar 

  47. Winkel, R.: Diagram rules for the generation of Schubert polynomials. J. Combin. Theory A. 86, 14–48 (1999)

    Article  MathSciNet  Google Scholar 

  48. Winkel, R.: Tropicalization, symmetric polynomials, and complexity. J. Symb. Comput (2019). arXiv:1710.03312

Download references

Acknowledgements

We thank Alexander Barvinok, Laura Escobar, Sergey Fomin, Allen Knutson, Melinda Lanius, Fu Liu, Mark Shimozono, John Stembridge, Sue Tolman and Anna Weigandt for very helpful conversations. We thank Bruce Reznick specifically for his example of \(f=x_1^2+x_2 x_3+\cdots \) we used in the introduction. AY was supported by an NSF grant. CM and NT were supported by UIUC Campus Research Board Grants. We made significant use of SAGE during our investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Yong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monical, C., Tokcan, N. & Yong, A. Newton polytopes in algebraic combinatorics. Sel. Math. New Ser. 25, 66 (2019). https://doi.org/10.1007/s00029-019-0513-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-019-0513-8

Mathematics Subject Classification

Navigation