Skip to main content
Log in

On the well-posedness of the quasi-geostrophic equation in the Triebel-Lizorkin-Lorentz spaces

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

In this paper, we establish the local well-posedness for the quasi-geostrophic equations and obtain a blow-up criterion of smooth solutions in the framework of Triebel-Lizorkin-Lorentz spaces by adapting a method in Chen-Miao-Zhang (Arch. Rational Mech. Anal. 195: 2010, 561–578). Our new function spaces contain the classical Triebel-Lizorkin spaces and Sobolev spaces, and thus the corresponding results generalize several known ones, for instance, Chae (Nonlinearity 16: 2003, 479–495) and Castro et al. (Nonlinearity 22: 2009, 1791–1815). The main ingredients of our proofs are Littlewood–Paley decomposition and the paradifferential calculus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abidi H., Hmidi T.: On the global well-posedness of the critical quasi-geostrophic equation. SIAM J. Math. Anal. 40, 167–185 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beale J.T., T. Kato, A. Majda: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Comm. Math. Phys. 94, 61–66 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bony J.M.: Calcul symbolique et propagation des singularités pour les éqautions aux dérivées partielles non linéaires. Ann. Sci. Ecole Norm. Sup. 14, 209–246 (1981)

    MathSciNet  MATH  Google Scholar 

  4. Caffarelli L., Vasseur A.: Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Annals of Mathematics 171, 1903–1930 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Castro A., Cordoba D., Gancedo F., Orive R.: Incompressible flow in porous media with fractional diffusion. Nonlinearity 22, 1791–1815 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chae D.: On the well-posedness of the Euler equations in the Triebel-Lizorkin spaces. Comm. Pure Appl. Math. 55, 654–678 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chae D.: The quasi-geostrophic equation in the Triebel-Lizorkin spaces. Nonlinearity 16, 479–495 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chemin J.Y.: Perfect Incompressible Fluids. Oxford University Press, New York (1998)

    MATH  Google Scholar 

  9. Chen Q., Miao C., Zhang Z.: A new Bernstein’s inequality and the 2D dissipative quasi-geostrophic eqaution. Commun. Math. Phys. 271, 821–838 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen Q., Miao C., Zhang Z.: On the well-posedness of the ideal MHD equations in the Triebel-Lizorkin spaces. Arch. Rational Mech. Anal. 195, 561–578 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Constantin P., Majda A., Tabak E.: Formation of strong fronts in the 2-D quasi- geostrophic thermal active scalar. Nonlinearity 7, 1495–1533 (1994a)

    Article  MathSciNet  MATH  Google Scholar 

  12. Constantin P., Majda A., Tabak E.: Singular front formation in a model for quasigeostrophic flow. Phys. Fluids 6, 9–11 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Constantin P., WU J.: Behaviour of solutions of 2D quasi-geostrophic equations. SIAM J. Math. Anal. 30, 937–948 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Constantin P., WU J.: Regularity of Hölder continuous solutions of the supercritical quasi-geostrophic equation. Ann. I. H. Poincare-AN 25, 1103–1110 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Constantin P., WU J.: Hölder continuity of solutions of supercritical dissipative hydrodynamic transport equations. Ann. I. H. Poincare-AN 26, 159–180 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Cordoba D., Fefferman C.: Scalars convected by a 2-dimensional incompressible flow. Commun. Pure Appl. Math. 55, 255–260 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. R. DANCHIN, Fourier Analysis Methods for PDE’s, Lecture Notes, 2005.

  18. Dong H.: Dissipative quasi-geostrophic equations in critical Sobolev spaces: smoothing effect and global wellposedness. Discrete Contin. Dyn. Syst. 26, 1197–1211 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dong H., Li D.: On the 2D critical and supercritical dissipative quasi-geostrophic equation in Besov spaces. J. Differential Equations 248, 2684–2702 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fefferman C., Stein E.M.: Some maximal inequalities. Amer. J. Math., 93, 107–115 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  21. Frazier M., Torres R., Weiss G.: The boundedness of Calderon-Zygmund operators on the spaces \({\dot{F}^{\alpha,q}_p}\). Revista Mathematica Ibero-Americana 4, 41–72 (1988)

    MathSciNet  MATH  Google Scholar 

  22. Grafakos L.: Classical Fourier Analysis (2nd). Spring, New York (2008)

    MATH  Google Scholar 

  23. Hmidi T., Keraani S.: Global solutions of the super-critical 2D quasi-geostrophic equation in Besov spaces. Advances in Mathematics 214, 618–638 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ju N.: Dissipative quasi-geostrophic equation: local well-posedness, global regularity and similarity solutions. Indiana Univ. Math. J. 56, 187–206 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kiselev A., Nazarov F.: Variation on a theme of Caffarelli and Vasseur. J. Math. Sci. 166, 31–39 (2010)

    Article  Google Scholar 

  26. Kiselev A., Nazarov F., Volberg A.: Global well-posedness for the critical 2D dissipative quasi-geostrophic equation. Invent. Math. 167, 445–453 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  27. Majda A., Bertozzi A.: Vorticity and Incompressible Flow. Cambridge University Press, New York (2002)

    MATH  Google Scholar 

  28. Ohkitani K., Yamada M.: Inviscid and inviscid-limit behavior of a surface quasi- geostrophic flow. Phys. Fluids 9, 876–882 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  29. Stein E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, New Jersey (1970)

    MATH  Google Scholar 

  30. H. Triebel, Theory of Function Spaces, Monograph in Mathematics, Vol. 78, Basel: Birkhauser Verlag, 1983.

  31. Wang H., Jia H.: Local well-posedness for the 2D non-dissipative quasi-geostrophic equation in Besov spaces. Nonlinear Anal.(TMA) 70, 3791–3798 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wu J.: Quasi-geostrophic-type equations with initial data in Morrey spaces. Nonlinearity 10, 1409–1420 (1997a)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wu J.: Inviscid limits and regularity estimates for the solutions of the 2-D dissipative quasi- geostrophic equations. Indiana Univ. Math. J. 46, 1113–1124 (1997b)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wu J.: The quasi-geostrophic equation with critical or supercritical dissipation. Nonlinearity 18, 139–154 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yang Q., Cheng Z., Peng L.: Uniform characterization of function spaces by wavelets. Acta Mathematica Scientia 25A, 130–144 (2005)

    MathSciNet  Google Scholar 

  36. Yuan B., Yuan J.: Global well-posedness of incompressible flow in porous media with critical diffusion in Besov spaces. J. Differential Equations 246, 4405–4422 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoyin Xiang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, Z., Yan, W. On the well-posedness of the quasi-geostrophic equation in the Triebel-Lizorkin-Lorentz spaces. J. Evol. Equ. 11, 241–263 (2011). https://doi.org/10.1007/s00028-010-0090-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-010-0090-y

Mathematics Subject Classification (2000)

Keywords

Navigation