Skip to main content
Log in

Moments of Normally Distributed Random Matrices Given by Generating Series for Connection Coefficients — Explicit Bijective Computation

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

This paper is devoted to the explicit computation of some generating series for the connection coefficients of the double cosets of the hyperoctahedral group that arise in the study of the spectra of normally distributed random matrices. Aside their direct algebraic and combinatorial interpretations in terms of factorizations of permutations with specific properties, these connection coefficients are closely linked to the theory of zonal spherical functions and zonal polynomials. As shown by Hanlon, Stanley, Stembridge (1992), their generating series in the basis of power sum symmetric functions is equal to the mathematical expectation of the trace of (XUYU t)n where X and Y are given symmetric matrices, U is a random real valued square matrix of standard normal distribution and n a non-negative integer. We provide the first explicit evaluation of these series in terms of monomial symmetric functions. Our development relies on an interpretation of the connection coefficients in terms of locally orientable hypermaps and a new bijective construction between partitioned locally orientable hypermaps and some decorated forests. As a corollary we provide a simple explicit evaluation of a similar generating series that gives the mathematical expectation of the trace of (XUYU*)n when U is complex valued and X and Y are given hermitian matrices and recover a former result by Morales and Vassilieva (2009).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bédard F., Goupil A.: The poset of conjugacy classes and decomposition of products in the symmetric group. Canad. Math. Bull. 35(2), 152–160 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bernardi O.: An analogue of the Harer-Zagier formula for unicellular maps on general surfaces. Adv. Appl. Math. 48(1), 164–180 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Biane, P.: Nombre de factorisations d’un grand cycle. Sém. Lothar. Combin. 51, B51a (2004/05)

  4. Chapuy G., Féray V., Fusy E.: A simple model of trees for unicellular maps. J. Combin. Theory Ser. A 120(8), 2064–2092 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Goulden I.P., Jackson D.M.: The combinatorial relationship between trees, cacti and certain connection coefficients for the symmetric group. European J. Combin. 13(5), 357–365 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  6. Goulden I.P., Jackson D.M.: Maps in locally orientable surfaces, the double coset algebra and zonal polynomials. Canad. J. Math. 48, 569–584 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Goulden I.P., Jackson D.M.: Combinatorial constructions for integrals over normally distributed random matrices. Proc. Amer. Math. Soc. 123(4), 995–1003 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Goulden I.P., Jackson D.M.: Connection coefficients, matchings, and combinatorial conjectures for Jack symmetric functions. Trans. Amer. Math. Soc. 348(3), 873–892 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Goulden, I.P., Jackson, D.M.: Combinatorial Enumeration. Dover, Mineola, NY (2004)

  10. Goulden I.P., Nica A.: A direct bijection for the Harer-Zagier formula. J. Combin. Theory Ser. A 111(2), 224–238 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Goupil A., Schaeffer G.: Factoring n-cycles and counting maps of given genus. European J. Combin. 19(7), 819–834 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hanlon, P.J., Stanley, R.P., Stembridge, J.R.: Some combinatorial aspects of the spectra of normally distributed random matrices. In: Richards, D.St.P. (ed.) Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), Contemp. Math. 138, pp. 151–174. Amer. Math. Soc., Providence, RI (1992)

  13. Harer J., Zagier D.: The Euler characteristic of the moduli space of curves. Invent. Math. 85(3), 457–485 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  14. Harish-Chandra: Differential operators on a semisimple Lie algebra. Amer. J. Math. 79(1), 87–120 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  15. Irving J.: On the number of factorizations of a full cycle. J. Combin. Theory Ser. A 113(7), 1549–1554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Itzykson C., Zuber J.-B.: The planar approximation II. J. Math. Phys. 21(3), 411–421 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jackson D.M.: Some combinatorial problems associated with products of conjugacy classes of the symmetric group. J. Combin. Theory Ser. A 49(2), 363–369 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lass B.: Démonstration combinatoire de la formule de Harer-Zagier. C. R. Acad. Sci. Paris Sér. I Math. 333(3), 155–160 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Macdonald, I.G.: Symmetric Functions and Hall Polynomials. 2nd Edition. The Clarendon Press, Oxford University Press, New York (1995)

  20. Morales, A., Vassilieva, E.A.: Bijective enumeration of bicolored maps of given vertex degree distribution. In: Krattenthaler, C., Strehl, V., Kauers, M. (eds.) 21st International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2009), Discrete Math. Theor. Comput. Sci. Proc., AK, pp. 661–672. Assoc. Discrete Math. Theor. Comput. Sci., Nancy (2009)

  21. Morales, A., Vassilieva, E.A.: Direct bijective computation of the generating series for 2 and 3-connection coefficients of the symmetric group. Electron. J. of Combin. 20(2), #P6 (2013)

  22. Olson, W.H., Uppuluri, V.R.R.: Asymptotic distribution of eigenvalues of random matrices. In: Le Cam, L.M., Neyman, J., Scott, E.L. (eds.) Proceedings of the Sixth Berkeley Symposium onMathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971), Vol. III: Probability Theory, pp. 615–644. Univ. of California Press, Berkeley, CA (1972)

  23. Poulalhon D., Schaeffer G.: Factorizations of large cycles in the symmetric group. Discrete Math. 254(1-3), 433–458 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  24. Schaeffer G., Vassilieva E.A.: A bijective proof of Jackson's formula for the number of factorizations of a cycle. J. Combin. Theory Ser. A 115(6), 903–924 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Stanley, R.P.: Enumerative Combinatorics, Volume 2. Cambridge University Press, Cambridge (1999)

  26. Vassilieva E.A.: Bijective enumeration of 3-factorizations of an N-Cycle. Ann. Combin. 16(2), 367–387 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Vassilieva E.A.: Moments of normally distributed random matrices given by generating series for connection coefficients — explicit algebraic computation. Discrete Math. 338(9), 1603–1613 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina Vassilieva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vassilieva, E. Moments of Normally Distributed Random Matrices Given by Generating Series for Connection Coefficients — Explicit Bijective Computation. Ann. Comb. 21, 445–477 (2017). https://doi.org/10.1007/s00026-017-0356-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-017-0356-y

Mathematics Subject Classification

Keywords

Navigation