1 Introduction

It is well known that there is a great number of interesting results in Fourier analysis established by assuming monotonicity of Fourier coefficients. The following classical convergence result can be found in many monographs (see for example [3, 18] or [1]).

Theorem 1

Suppose that \(b_{n}\ge b_{n+1}\) and \( b_{n}\rightarrow 0\) as \(n \rightarrow \infty \). Then a necessary and sufficient condition for the uniform convergence of the series

$$\begin{aligned} \sum \limits _{n=1}^{\infty }b_{n}\sin nx \end{aligned}$$
(1.1)

is \(nb_{n}\rightarrow 0\) as \(n \rightarrow \infty \).

This result has been generalized by weakening the monotonicity conditions of the coefficient (see for example [2, 14]). We present below a historical outline of the generalizations of this theorem.

In 2001 Leindler defined (see [8] and [10]) a new class of sequences named as sequences of Rest Bounded Variation, briefly denoted by RBVS, i.e.,

$$\begin{aligned} RBVS=\left\{ a:=\left( a_{n}\right) \in \mathbb {C}:\sum \limits _{n=m}^{\infty }\left| \Delta _1a_n\right| \le C \left| a_{m}\right| \text { for all }m\in \mathbb {N} \right\} , \end{aligned}$$

where here and throughout the paper \(C=C\left( a\right) \) always indicates a constant only depending on a and \(\Delta _ra_n = a_n-a_{n+r}\) for \(r \in \mathbb {N}\).

Denote by MS the class of monotone decreasing sequences, then it is clear that

$$\begin{aligned} MS\subsetneq RBVS. \end{aligned}$$

Further, Tikhonov introduced a class of General Monotone Sequences GMS defined as follows (see [16]):

$$\begin{aligned} GMS=\left\{ a:=\left( a_{n}\right) \in \mathbb {C}:\sum \limits _{n=m}^{2m-1}\left| \Delta _1a_n\right| \le C \left| a_{m}\right| \text { for all }m\in \mathbb {N} \right\} . \end{aligned}$$

It is clear that

$$\begin{aligned} RBVS\subsetneq GMS{.} \end{aligned}$$

The class of GMS was generalized by Tikhonov (see [15]) and independently by Zhou, Zhou and Yu (see [17]) to the class of Mean Value Bounded Variation Sequences (MVBVS). We say that a sequence \( a:=\left( a_{n}\right) \) of complex numbers is said to be MVBVS if there exists \(\lambda \ge 2\) such that

$$\begin{aligned} \sum \limits _{k=n}^{2n-1}\left| \Delta _1a_k\right| \le \frac{C}{n} \sum \limits _{k=[n/\lambda ]}^{\lambda n} \left| a_{k} \right| \end{aligned}$$

holds for \(n \in \mathbb {N}\), where [x] is the integer part of x. They proved also in [17] that

$$\begin{aligned} GMS \subsetneq MVBVS. \end{aligned}$$

Theorem 1 was generalized for the class RBVS in [8], for the class GMS in [16] and for the class MVBVS in [17].

Next, Tikhonov [13, 15, 16] and Leindler [9] defined the class of \(\beta \)—general monotone sequences as follows:

Definition 1

Let \(\beta :=\left( \beta _{n}\right) \) be a nonnegative sequence. The sequence of complex numbers \(a:=\left( a_{n}\right) \) is said to be \(\beta { -}\) general monotone, or \(a\in GM\left( \beta \right) \), if the relation

$$\begin{aligned} \sum \limits _{n=m}^{2m-1}\left| \Delta _1a_n\right| \le C \beta _{m} \end{aligned}$$

holds for all \(m \in \mathbb {N}\).

In the paper [15] Tikhonov considered i.e. the following examples of the sequences \(\beta _{n}\):

  1. (1)

    \(_{1}\beta _{n}=\left| a_{n}\right| ,\)

  2. (2)

    \(_{2}\beta _{n}=\sum \nolimits _{k=\left[ n/c \right] }^{\left[ cn\right] } \frac{\left| a_{k}\right| }{k}\) for some \(c>1\).

It is clear that \(GM\left( _{1}\beta \right) =GMS\). Moreover, Tikhonov showed in [15] that

$$\begin{aligned} GM\left( _{1}\beta \right) \subsetneq GM\left( _{2}\beta \right) \equiv \text {MVBVS}. \end{aligned}$$

Tikhonov proved also in [15] the following theorem:

Theorem 2

Let a sequence \((b_n) \in GM(_2\beta )\). If \(n|b_n| \rightarrow 0\) as \( n\rightarrow \infty \), then the series (1.1) converges uniformly.

Further, Szal defined a new class of sequences in the following way (see [11]):

Definition 2

Let \(\beta :=\left( \beta _{n}\right) \) be a nonnegative sequence and r a natural number. The sequence of complex numbers \(a:=\left( a_{n}\right) \) is said to be \(\left( \beta ,r\right) -\)general monotone, or \(a\in GM\left( \beta ,r\right) \), if the relation

$$\begin{aligned} \sum \limits _{n=m}^{2m-1}\left| \Delta _ra_n\right| \le C \beta _{m} \end{aligned}$$

holds for all \(m \in \mathbb {N}\).

It is clear that \(GM\left( \beta ,1\right) \equiv GM\left( \beta \right) \). Moreover, it is easy to show that the sequence

$$\begin{aligned} a_n = \frac{\left( -1\right) ^n}{n} \end{aligned}$$

belongs to \(GM\left( {}_1\beta ,2\right) \) and does not belong to \(GM\left( {}_1\beta \right) \). This example shows that the class \(GM\left( {}_1\beta \right) \) is essentially wider than the class \(GM\left( {}_1\beta \right) \). In [11] Szal showed more general relations

$$\begin{aligned} GM({}_2\beta ,1) \subsetneq GM({}_2\beta ,r) \end{aligned}$$

for all \(r >1\).

In the paper [11] Szal generalized Theorem 1 by proving the following theorem.

Theorem 3

[11]. Let a sequence \(\left( b_{n}\right) \in GM\left( {}_2\beta ,r\right) \), where \(r \in \mathbb {N}\). If \(n|b_n| \rightarrow 0\) as \(n \rightarrow \infty \) and

$$\begin{aligned} \sum \limits _{n=1}^{\infty }\sum \limits _{k=1}^{[r/2]}\left| b_{r\cdot n +k} - b_{r\cdot n + r - k} \right| < \infty \text { for } r\ge 3, \end{aligned}$$

then the series (1.1) converges uniformly.

In the paper [4] Kórus defined a new class of sequences in the following way:

Definition 3

The sequence of complex numbers \(a:=\left( a_{n}\right) \) is in the class \( SBVS_{2}\) (Supremum Bounded Variation Sequence), if the relation

$$\begin{aligned} \sum \limits _{n=m}^{2m-1}\left| \Delta _{1}a_{n}\right| \le \frac{C}{ n}\underset{m\ge b(n)}{\sup }\sum \limits _{k=m}^{2m} \left| a_{k} \right| \end{aligned}$$

holds for all \(m\in \mathbb {N}\), where (b(n)) is a nonnegative sequence tending monotonically to infinity depending only on a.

In the paper [4] Kórus also proved the following theorem:

Theorem 4

Let a sequence \((b_n) \in SBVS_2\). If \(n|b_n| \rightarrow 0\) as \( n\rightarrow \infty \), then the series (1.1) converges uniformly.

Next Tikhonov and Liflyand defined a class of \(GMS_p(\beta )\) in the following way (see [6, 7]):

Definition 4

Let \(\beta =(\beta _{n})\) be a nonnegative sequence and p a positive real number. We say that a sequence of complex numbers \(a=(a_{n})\in GMS_{p}(\beta )\) if the relation

$$\begin{aligned} \left( \sum \limits _{n=m}^{2m-1}\left| \Delta _{1}a_{n}\right| ^{p}\right) ^{\frac{ 1}{p}}\le C\beta _{m} \end{aligned}$$

holds for all \(m\in \mathbb {N}\).

It is clear that \(GMS_1(\beta )=GM(\beta )\).

The latest class of sequences was defined by Kubiak and Szal in [5] as follows:

Definition 5

Let \(\beta :=\left( \beta _{n}\right) \) be a nonnegative sequence, r a natural number and p a positive real number. The sequence of complex numbers \(a:=\left( a_{n}\right) \) is said to be \(\left( p,\beta ,r\right) -\) general monotone, or \(a\in GM\left( p, \beta ,r\right) \), if the relation

$$\begin{aligned} \left( \sum \limits _{n=m}^{2m-1}\left| \Delta _ra_n\right| ^p\right) ^{\frac{1}{p}} \le C \beta _m \end{aligned}$$

holds for all \(m\in \mathbb {N}\).

It is clear that \(GM(p,\beta ,1)=GMS_p(\beta )\) and \(GM(1,\beta ,r) = GM(\beta ,r)\).

Further we will consider the following sequence:

$$\begin{aligned} {}_3\beta _n(q)=\frac{1}{n} \underset{m\ge b(n)}{\sup }m \left( \frac{1}{m} \sum \limits _{k=m}^{2m} \left| a_{k}\right| ^q \right) ^{\frac{1}{q}}, \end{aligned}$$

where \((a_n) \subset \mathbb {C}, a_n\rightarrow 0\) as \(n\rightarrow \infty \), \(q > 0\), (b(n)) is a nonnegative sequence such that \(b(n) \nearrow \) and \(b(n) \rightarrow \infty \) as \(n \rightarrow \infty \). It is clear that \(SBVS_2 = GM(1, {}_3\beta (1),1)\).

In the further part of our paper we will consider the following series:

$$\begin{aligned} \sum \limits _{n=1}^{\infty } b_n \sin (cnx), \end{aligned}$$
(1.2)
$$\begin{aligned} \sum \limits _{n=1}^{\infty } a_n \cos (cnx), \end{aligned}$$
(1.3)
$$\begin{aligned} \sum \limits _{n=1}^{\infty } c_n e^{icnx}, \end{aligned}$$
(1.4)

where \(c >0.\)

In the paper [5] Kubiak and Szal showed the following embedding relations:

Theorem 5

Let \(q >0, r\in \mathbb {N}\) and \(0 < p_1 \le p_2\). Then

$$\begin{aligned} GM(p_1,{}_3\beta (q),r) \subseteq GM(p_2,{}_3\beta (q),r). \end{aligned}$$

Theorem 6

Let \(p \ge 1\), \(q > 0\), \(r_1,r_2 \in \mathbb {N}\), \(r_1 \le r_2\). If \(r_1 \mid r_2\), then

$$\begin{aligned} GM(p,{}_3\beta (q),r_1) \subseteq GM(p,{}_3\beta (q),r_2). \end{aligned}$$

Moreover they proved in [5] the following generalization of Theorem 1:

Theorem 7

Let a sequence \(\left( b_{n}\right) \in GM\left( p, {}_{3}\beta (q),r\right) \), where \(p,q\ge 1\), \(r \in \mathbb {N}\) and \(b(n)\ge n\) for \(n \in \mathbb {N}\). If

$$\begin{aligned} n^{2-\frac{1}{p}}\left| b_{n}\right| \rightarrow 0\text { as } n\rightarrow \infty \end{aligned}$$
(1.5)

and

$$\begin{aligned} \sum \limits _{k=1}^{\infty } b_k \sin \left( \frac{2l \pi }{r} k\right) <\infty ,\text { for }r\ge 3, \end{aligned}$$

for all \(l= 1,...,[\frac{r}{2}]-1 \) when r is an even number and \(l= 1,...,[\frac{r}{2}] \) when r is an odd number, then the series (1.2) is uniformly convergent.

Theorem 8

Let a sequence \(\left( a_{n}\right) \in GM\left( p, {}_{3}\beta (q),r\right) \), where \(p,q\ge 1\), \(r \in \mathbb {N}\) and \(b(n)\ge n\) for \(n \in \mathbb {N}\). If

$$\begin{aligned} n^{2-\frac{1}{p}}\left| a_{n}\right| \rightarrow 0\text { as } n\rightarrow \infty \end{aligned}$$

and

$$\begin{aligned} \sum \limits _{k=1}^{\infty } a_k \cos \left( \frac{2l \pi }{r} k\right) <\infty , \end{aligned}$$

for all \(l= 0,1,...,[\frac{r}{2}] \), then the series (1.3) is uniformly convergent.

Theorem 9

Let a sequence \(\left( c_{n}\right) \in GM\left( p, {}_{3}\beta (q),r\right) \), where \(p,q\ge 1\), \(r \in \mathbb {N}\) and \(b(n)\ge n\) for \(n \in \mathbb {N}\). If

$$\begin{aligned} n^{2-\frac{1}{p}}\left| c_{n}\right| \rightarrow 0\text { as } n\rightarrow \infty \end{aligned}$$

and

$$\begin{aligned} \sum \limits _{k=1}^{\infty } c_k e^{\left( \frac{2l \pi }{r} k\right) i} <\infty , \end{aligned}$$

for all \(l= 0,1,...,[\frac{r}{2}] \), then the series (1.4) is uniformly convergent.

In this paper we will show that Theorems 7, 8, 9 are true under weakened assumptions in case \(p>1\).

2 Main Results

We have the following results:

Theorem 10

Let a sequence \(\left( b_{n}\right) \in GM\left( p, {}_{3}\beta (q),r\right) \), where \(q\ge 1\), \(p>1\) and \(r \in \mathbb {N}\). If

$$\begin{aligned} n \ln n\left| b_{n}\right| \rightarrow 0\text { as } n\rightarrow \infty \end{aligned}$$
(2.1)

and

$$\begin{aligned} \sum \limits _{k=1}^{\infty } b_k \sin \left( \frac{2l \pi }{r} k\right) <\infty ,\text { for }r\ge 3, \end{aligned}$$
(2.2)

for all \(l= 1,...,[\frac{r}{2}]-1 \) when r is an even number and \(l= 1,...,[\frac{r}{2}] \) when r is an odd number, then the series (1.2) is uniformly convergent.

Proposition 1

There exist an \(x_0 \in \mathbb {R}\) and a sequence \( (b_n) \in GM(p, {}_3\beta (1), 3)\) for \(p>1\) with the properties \(nb_n \rightarrow 0 \) as \(n \rightarrow \infty \) and \((b_n) \notin GM(1, {}_3\beta (1),3)\), for which the series (1.2) is divergent in \(x_0\).

Theorem 11

Let a sequence \(\left( a_{n}\right) \in GM\left( p, {}_{3}\beta (q),r\right) \), where \(q\ge 1\), \(p>1\) and \(r \in \mathbb {N}\). If

$$\begin{aligned} n \ln n\left| a_{n}\right| \rightarrow 0\text { as } n\rightarrow \infty \end{aligned}$$

and

$$\begin{aligned} \sum \limits _{k=1}^{\infty } a_k \cos \left( \frac{2l \pi }{r} k\right) <\infty , \end{aligned}$$
(2.3)

for all \(l= 0,1,...,[\frac{r}{2}] \), then the series (1.3) is uniformly convergent.

Theorem 12

Let a sequence \(\left( c_{n}\right) \in GM\left( p, {}_{3}\beta (q),r\right) \), where \(q\ge 1\), \(p>1\) and \(r \in \mathbb {N}\). If

$$\begin{aligned} n \ln n\left| c_{n}\right| \rightarrow 0\text { as } n\rightarrow \infty \end{aligned}$$

and

$$\begin{aligned} \sum \limits _{k=1}^{\infty } c_k e^{\left( \frac{2l \pi }{r} k\right) i} <\infty , \end{aligned}$$
(2.4)

for all \(l= 0,1,...,[\frac{r}{2}] \), then the series (1.4) is uniformly convergent.

Remark 1

It is clear that if a sequence \((b_n)\) satisfies the condition (2.1) then it fulfills the condition (1.5) with \(p>1\), too. Therefore, from Theorem 10 we get Theorem 7 is case \(p>1\). The same remark applies to Theorems 11, 8 and Theorems 12, 9, respectively.

3 Lemma

Denote, for \(r \in \mathbb {N}\) and \(k=0,1,2...\) by

$$\begin{aligned} \tilde{D}_{k,r}{(x)}=\frac{\cos \left( k+\frac{r}{2}\right) x}{2\sin \frac{rx}{ 2}}, \hspace{15mm} D_{k,r}{(x)}=\frac{\sin \left( k+\frac{r}{2}\right) x}{ 2\sin \frac{rx}{2}} \end{aligned}$$

the Dirichlet type kernels.

Lemma 1

. [11, 12] Let \(r,m,n \in \mathbb {N}, l\in \mathbb {Z}\) and \((a_k) \subset \mathbb {C}\). If \(x \ne \frac{2l\pi }{r}\), then for \(m \ge n\)

$$\begin{aligned} \sum \limits _{k=n}^{m} a_{k} sin(kx)&= - \sum \limits _{k=n}^{m} \Delta _{r} a_{k} \tilde{D}_{k,r}(x) + \sum \limits _{k=m+1}^{m+r} a_{k} \tilde{D} _{k,-r}(x) \nonumber&\\&\quad + \sum \limits _{k=n}^{n+r-1} a_{k} \tilde{D}_{k,-r}(x) \end{aligned}$$
(3.1)

and

$$\begin{aligned} \sum \limits _{k=n}^{m}a_{k}\cos kx&= \sum \limits _{k=n}^{m} \Delta _r a_k \tilde{D}_{k,r}(x) - \sum \limits _{k=m+1}^{m+r} a_k \tilde{D}_{k,-r}(x) \nonumber&\\&\quad + \sum \limits _{k=n}^{n+r-1} a_k \tilde{D}_{k,-r}(x). \end{aligned}$$
(3.2)

Lemma 2

[5]. Let \(r,m,n\in \mathbb {N}, l \in \mathbb {Z}\) and \(a=(a_n) \subset \mathbb {C}\). If \(x \ne \frac{2l\pi }{r}\), then for \(m \ge n\)

$$\begin{aligned} \begin{aligned} \sum \limits _{k=n}^{m}a_{k}e^{ikx}&= \frac{-i}{2\sin \left( \frac{rx}{2}\right) } \left( \sum \limits _{k=n}^{m} \Delta _r a_k e^{-i\left( k+\frac{r}{2} \right) x} - \sum \limits _{k=m+1}^{m+r}a_{k} e^{-i\left( k-\frac{r}{2} \right) x} \right. \\ {}&\quad + \left. \sum \limits _{k=n}^{n+r-1}a_{k} e^{-i\left( k-\frac{r}{2} \right) x} \right) . \end{aligned} \end{aligned}$$

Lemma 3

Let \(n, N \in \mathbb {N}\). Then for \( p \ge 1\)

$$\begin{aligned} \int _{n+N^{\frac{1}{p}}}^{n+N} \frac{1}{k\ln k} dk \le \ln p. \end{aligned}$$

Proof

This inequality is true for \(p =1 \). Consider the function

$$\begin{aligned} f(p) = \left( n+N^{\frac{1}{p}}\right) ^p \end{aligned}$$

for \(p > 0\). We get:

$$\begin{aligned} \begin{aligned} f'(p) \ge \left( n+N^{\frac{1}{p}}\right) ^{p-1} \frac{1}{p}n \ln N \ge 0 \text{ for } \text{ all } p>0. \end{aligned} \end{aligned}$$

It means that the function is non-decresing with respect to p. Thus:

$$\begin{aligned} n+N = f(1) \le f(p) = \left( n+N^{\frac{1}{p}}\right) ^p \text { for } p\ge 1. \end{aligned}$$

Hence we get that:

$$\begin{aligned} \ln \left( n+N\right) \le \ln \left( n+N^{\frac{1}{p}}\right) ^p. \end{aligned}$$
(3.3)

Therefore, integrating by substitution with \(\ln k = t\) and using (3.3), we get

$$\begin{aligned} \int _{n+N^{\frac{1}{p}}}^{n+N} \frac{1}{k \ln k } dk&= \int _{\ln (n+N)^{\frac{1}{p}}}^{\ln (n+N)} \frac{1}{t} dt = \ln (\ln (n+N)) - \ln (\ln (n+N^\frac{1}{p}))&\\&= \ln \left( \frac{\ln (n+N)}{\ln \left( n+N^{\frac{1}{p}}\right) }\right) = \ln \left( p \frac{\ln \left( n+N\right) }{\ln \left( n+N^{\frac{1}{p}}\right) ^p}\right) \le \ln p \end{aligned}$$

and the proof is completed. \(\square \)

4 Proofs of the Main Results

4.1 Proof of the Theorem 10

Let \(\epsilon >0\). Then from (2.1) and (2.2) we obtain:

$$\begin{aligned} n\ln n \left| b_n \right| <\varepsilon , \end{aligned}$$
(4.1)
$$\begin{aligned} \left| \sum \limits _{k=n}^{\infty } b_{k}\sin \left( k\frac{2l\pi }{r}\right) \right| < \varepsilon , \end{aligned}$$
(4.2)

and

$$\begin{aligned} \left| \sum \limits _{k=n}^{n+N } b_{k}\sin \left( k\frac{2l\pi }{r}\right) \right| < \varepsilon , \end{aligned}$$
(4.3)

for all \(n > N_\epsilon \) and \(N \in \mathbb {N}\), where \(l= 1,...,[\frac{r}{2} ]-1 \) when r is an even number and \(l= 1,...,[\frac{r}{2}] \) when r is an odd number. Denote by

$$\begin{aligned} \tau _{n}\left( x\right) =\sum \limits _{k=n}^{\infty }b_{k}\sin (ckx). \end{aligned}$$

We will show that

$$\begin{aligned} \left| \tau _{n}\left( x\right) \right| \ll \varepsilon \end{aligned}$$
(4.4)

holds for any \(n\ge \max \{N_\varepsilon ,2\}\) and \(x \in \mathbb {R}\). Since \( \tau _{n}\left( 0 \right) =0\) and \(\tau _{n}\left( \frac{\pi }{c} \right) =0\) it suffices to prove (4.4) for \(0<x< \frac{\pi }{c} \).

First, we will show that (4.4) is valid for \(x=\frac{2\,l\pi }{rc}\), where l is an integer number such that \(0<2\,l<r.\) Using (4.2) we get

$$\begin{aligned} \left| \tau _{n}\left( \frac{2l\pi }{rc}\right) \right| < \varepsilon . \end{aligned}$$

Now, we prove that (4.4) holds for \(\frac{2\,l\pi }{rc}<x\le \frac{ 2\,l\pi }{rc}+\frac{\pi }{rc}\), where \(0\le 2\,l<r\).

Let \(N^{\frac{1}{p}}:=N^{\frac{1}{p}}\left( x\right) \ge r \) be a natural number such that

$$\begin{aligned} \frac{2l\pi }{rc}+\frac{\pi }{c(N+1)^{\frac{1}{p}}}<x\le \frac{2l\pi }{rc}+ \frac{\pi }{cN^{\frac{1}{p}}}. \end{aligned}$$
(4.5)

Then

$$\begin{aligned} \tau _{n}\left( x\right)&= \sum \limits _{k=n}^{n+N^{\frac{1}{p} }-1}b_{k}\sin (ckx) + \sum \limits _{k=n+N^{\frac{1}{p}}}^{n+N}b_{k}\sin (ckx) + \sum \limits _{k=n+N+1}^{\infty }b_{k}\sin (ckx)\\&=\tau _{n}^{\left( 1\right) }\left( x\right) +\tau _{n}^{\left( 2\right) }\left( x\right) +\tau _{n}^{\left( 3\right) }\left( x\right) . \end{aligned}$$

Applying Lagrange’s mean value theorem to the function \(f\left( x\right) =\sin (ckx)\) on the interval \(\left[ \frac{2\,l\pi }{rc},x\right] \) we obtain that for each k there exists \(y_k\in \left( \frac{2\,l\pi }{rc},x\right) \) such that

$$\begin{aligned} \sin (ckx)-\sin \left( k\frac{2l\pi }{r}\right) =ck\cos (cky_k)\left( x- \frac{2l\pi }{ rc}\right) . \end{aligned}$$

Using this we get

$$\begin{aligned} \begin{aligned} \tau _{n}^{\left( 1\right) }\left( x\right)&= \sum \limits _{k=n}^{n+N^{\frac{1}{ p}}-1}ckb_{k}\cos (cky_k)\left( x-\frac{2l\pi }{rc}\right) +\sum \limits _{k=n}^{n+N^{\frac{1}{p}}-1}b_{k}\sin \left( k\frac{2l\pi }{r} \right) \\ {}&= \tau _n^{(1.1)}(x) + \tau _n^{(1.2)}(x). \end{aligned} \end{aligned}$$

From (4.3) we have

$$\begin{aligned} \begin{aligned} \left| \tau _n^{(1.2)}(x) \right| <\varepsilon . \end{aligned} \end{aligned}$$

By (4.5) and (4.1)

$$\begin{aligned} \left| \tau _{n}^{\left( 1.1\right) }\left( x\right) \right|&\le \left( x-\frac{2l\pi }{rc}\right) \sum \limits _{k=n}^{n+N^{\frac{1}{p} }-1}ck\left| b_{k}\right| \le \left( x-\frac{2l\pi }{rc}\right) \sum \limits _{k=n}^{n+N^{\frac{1}{p}}-1}\frac{ck\ln k}{\ln k}\left| b_{k}\right| \\&< \left( x-\frac{2l\pi }{rc}\right) \sum \limits _{k=n}^{n+N^{\frac{1}{p}}-1} \frac{c\varepsilon }{\ln k} \le \frac{\pi \varepsilon }{\ln 2} . \end{aligned}$$

Using Lemma 3 we obtain

$$\begin{aligned} \left| \tau _{n}^{(2)}(x)\right|&= \left| \sum \limits _{k=n+N^{ \frac{1}{p}}}^{n+N}b_{k}\sin (ckx)\right| \le \sum \limits _{k=n+N^{\frac{ 1}{p}}}^{n+N}\frac{k\ln k}{k\ln k}\left| b_{k}\right| \ll \varepsilon \int _{n+N^{\frac{1}{p}}}^{n+N}\frac{1}{k\ln k}dk\\&\le \varepsilon \ln p. \end{aligned}$$

If \(\left( b_{n}\right) \in GM\left( p,{}_3\beta (q),r\right) \), then using Lemma 1, we get

$$\begin{aligned} \bigg \vert \tau _{n}&{}^{\left( 3\right) } \left( x\right) \bigg \vert =\left| \sum \limits _{j=0}^{\infty }\sum \limits _{k=2^{j}\left( n+N+1\right) }^{2^{j+1}\left( n+N+1\right) -1}b_{k}\sin (ckx)\right| \\&\le \sum \limits _{j=0}^{\infty }\left| \frac{-1}{2\sin \left( crx/2\right) }\left\{ \sum \limits _{k=2^{j}\left( n+N+1\right) }^{2^{j+1}\left( n+N+1\right) -1}\left( b_{k}-b_{k+r}\right) \cos \left( k+ \frac{r}{2}\right) c x\right. \right. \\&\quad \left. \left. +\sum \limits _{k=2^{j+1}\left( n+N+1\right) }^{2^{j+1}\left( n+N+1\right) +r-1}b_{k}\cos \left( k-\frac{r}{2}\right) c x-\sum \limits _{k=2^{j}\left( n+N+1\right) }^{2^{j}\left( n+N+1\right) +r-1}b_{k}\cos \left( k-\frac{r}{2}\right) cx\right\} \right| \\&\le \frac{1}{2\left| \sin \left( crx/2\right) \right| } \sum \limits _{j=0}^{\infty }\left\{ \sum \limits _{k=2^{j}\left( n+N+1\right) }^{2^{j+1}\left( n+N+1\right) -1}\left| b_{k}-b_{k+r}\right| +\sum \limits _{k=2^{j+1}\left( n+N+1\right) }^{2^{j+1}\left( n+N+1\right) +r-1}\left| b_{k}\right| \right. \\&\quad \left. +\sum \limits _{k=2^{j}\left( n+N+1\right) }^{2^{j}\left( n+N+1\right) +r-1}\left| b_{k}\right| \right\} . \end{aligned}$$

Further applying the Hölder inequality with \(p>1\), the inequality \( \frac{rc}{\pi }x-2\,l\le \left| \sin \frac{rcx}{2}\right| \) \(\left( x\in \left[ \frac{2\,l\pi }{rc },\frac{2\,l\pi }{rc}+\frac{\pi }{rc}\right] \text { and }0\le 2\,l<r\right) \), (4.5) and (4.1), we obtain

$$\begin{aligned} \bigg \vert \tau _{n}&{}^{\left( 3\right) } \left( x\right) \bigg \vert \le \frac{ 1}{\frac{rc}{\pi }x-2l}\sum \limits _{j=0}^{\infty }\left\{ \left( \sum \limits _{k=2^{j}\left( n+N+1\right) }^{2^{j+1}\left( n+N+1\right) -1}\left| b_{k}-b_{k+r}\right| ^p\right) ^{\frac{1}{p}} \right. \\&\quad \left. \left( \sum \limits _{k=2^{j}\left( n+N+1\right) }^{2^{j+1}\left( n+N+1\right) -1}1\right) ^{1-\frac{1}{p}} +\sum \limits _{k=2^{j}\left( n+N+1\right) }^{2^{j}\left( n+N+1\right) +r-1}\left| b_{k}\right| +\sum \limits _{k=2^{j+1}\left( n+N+1\right) }^{2^{j+1}\left( n+N+1\right) +r-1}\left| b_{k}\right| \right\} \\&\le \frac{(N+1)^\frac{1}{p}}{r}\sum \limits _{j=0}^{\infty }\left\{ \frac{ C\left( 2^j(n+N+1)\right) ^{1-\frac{1}{p}}}{2^j(n+N+1)} \underset{m\ge b\left( 2^j(n+N+1)\right) }{\sup }m \right. \\&\quad \left. \left( \frac{1}{m} \sum \limits _{k=m}^{2m-1 } \left| b_k\right| ^q\right) ^{\frac{1}{q}} +\sum \limits _{k=2^{j}\left( n+N+1\right) }^{2^{j}\left( n+N+1\right) +r-1}\left| b_{k}\right| +\sum \limits _{k=2^{j+1}\left( n+N+1\right) }^{2^{j+1}\left( n+N+1\right) +r-1}\left| b_{k}\right| \right\} \\&= \frac{(N+1)^\frac{1}{p}}{r}\sum \limits _{j=0}^{\infty }\left\{ \frac{C}{ \left( 2^j(n+N+1)\right) ^{\frac{1}{p}}} \underset{m\ge b\left( 2^j(n+N+1)\right) }{\sup }m^{1-\frac{1}{q}} \right. \\&\quad \left( \sum \limits _{k=m}^{2m-1 } \left( \frac{k \ln k\left| b_k \right| }{ k\ln k}\right) ^q\right) ^{\frac{1}{q}} +\sum \limits _{k=2^{j}\left( n+N+1\right) }^{2^{j}\left( n+N+1\right) +r-1}\frac{k\ln k\left| b_k \right| }{k\ln k} \\&\quad \left. +\sum \limits _{k=2^{j+1} \left( n+N+1\right) }^{2^{j+1}\left( n+N+1\right) +r-1}\frac{k\ln k\left| b_k \right| }{k\ln k} \right\} \\&< \frac{\varepsilon (N+1)^\frac{1}{p}}{r}\sum \limits _{j=0}^{\infty }\left\{ \frac{C}{\left( 2^j(n+N+1)\right) ^{\frac{1}{p}}} \underset{m\ge b\left( 2^j(n+N+1)\right) }{\sup }m^{1-\frac{1}{q}} \left( \sum \limits _{k=m}^{2m-1 } \left( \frac{1 }{k}\right) ^q\right) ^{\frac{1}{q}} \right. \\&\quad \left. +\sum \limits _{k=2^{j}\left( n+N+1\right) }^{2^{j}\left( n+N+1\right) +r-1}\frac{1}{k} +\sum \limits _{k=2^{j+1}\left( n+N+1\right) }^{2^{j+1}\left( n+N+1\right) +r-1}\frac{1}{k} \right\} \\&\le \frac{\varepsilon (N+1)^\frac{1}{p}}{r}\sum \limits _{j=0}^{\infty }\left\{ \frac{C}{\left( 2^j(n+N+1)\right) ^{\frac{1}{p}}} \underset{m\ge b\left( 2^j(n+N+1)\right) }{\sup }\ \left( m^{1-\frac{1}{q}} m^{-1} m^{\frac{1}{q }}\right) \right. \\&\quad \left. + \frac{3}{2}r\left( 2^j(n+N+1)\right) ^{-\frac{1}{p}} \right\} . \end{aligned}$$

Elementary calculations give:

$$\begin{aligned} \left| \tau _{n}^{\left( 3\right) }\left( x\right) \right|&< \frac{ \varepsilon (N+1)^\frac{1}{p}}{r}\sum \limits _{j=0}^{\infty }\left\{ \left( 2^j(n+N+1)\right) ^{-\frac{1}{p}} \left( C+\frac{3}{2}r\right) \right\} \\&\le \frac{\varepsilon (N+1)^\frac{1}{p}\left( C+\frac{3}{2}r\right) }{r \left( (n+N+1)\right) ^{\frac{1}{p}}}\sum \limits _{j=0}^{\infty }\left( \frac{1 }{2^\frac{1}{p}} \right) ^j \le \frac{\varepsilon \left( C+\frac{3}{2} r\right) }{r} \frac{1}{1-2^{-\frac{1}{p}}}. \end{aligned}$$

Finally, we prove that (4.4) is true for \(\frac{2\,l\pi }{rc}+\frac{\pi }{rc }\le x<\frac{2\left( l+1\right) \pi }{rc}\), where \(0<2\left( l+1\right) \le r.\)

Let \(M^{\frac{1}{p}}:=M^{\frac{1}{p}}\left( x\right) \ge r\) be a natural number such that

$$\begin{aligned} \frac{2\left( l+1\right) \pi }{rc}-\frac{\pi }{cM^{\frac{1}{p}}}\le x<\frac{ 2\left( l+1\right) \pi }{rc}-\frac{\pi }{c(M+1)^{\frac{1}{p}}}. \end{aligned}$$
(4.6)

Then

$$\begin{aligned} \tau _{n}\left( x\right)&= \sum \limits _{k=n}^{n+M^{\frac{1}{p} }-1}b_{k}\sin (ckx) + \sum \limits _{k=n+M^{\frac{1}{p}}}^{n+M}b_{k}\sin (ckx) + \sum \limits _{k=n+M+1}^{\infty }b_{k}\sin (ckx) \\&=\tau _{n}^{\left( 4\right) }\left( x\right) +\tau _{n}^{\left( 5\right) }\left( x\right) +\tau _{n}^{\left( 6\right) }\left( x\right) . \end{aligned}$$

Applying Lagrange’s mean value theorem to the function \(f\left( x\right) =\sin (ckx)\) on the interval \(\left[ x,\frac{2\left( l+1\right) \pi }{rc} \right] \) we obtain that for each k there exists \(z_k\in \left( x,\frac{ 2\left( l+1\right) \pi }{rc }\right) \) such that

$$\begin{aligned} \sin \left( k\frac{2\left( l+1\right) \pi }{r}\right) -\sin (ckx)=ck\cos (ckz_k)\left( \frac{2\left( l+1\right) \pi }{rc}-x\right) . \end{aligned}$$

Using this we get

$$\begin{aligned} \begin{aligned} \tau _{n}^{\left( 4\right) }\left( x\right)&=\sum \limits _{k=n}^{n+M^{\frac{1}{ p}}-1}ckb_{k}\cos (ckz_k)\left( \frac{2\left( l+1\right) \pi }{rc}-x\right) \\ {}&\quad +\sum \limits _{k=n}^{n+M^{\frac{1}{p}}-1}b_{k}\sin \left( k\frac{2\left( l+1\right) \pi }{r}\right) =\tau _{n}^{\left( 4.1\right) }\left( x\right) +\tau _{n}^{\left( 4.2\right) }(x). \end{aligned} \end{aligned}$$

From (4.2) we have

$$\begin{aligned} \begin{aligned} \left| \tau _n^{(4.2)}(x) \right| <\varepsilon . \end{aligned} \end{aligned}$$

By (4.6) and (4.1)

$$\begin{aligned} \left| \tau _{n}^{\left( 4.1\right) }\left( x\right) \right|&\le \left( \frac{2\left( l+1\right) \pi }{rc}-x\right) \sum \limits _{k=n}^{n+M^{ \frac{1}{p}}-1}ck\left| b_{k}\right| \le \frac{\pi }{M^{\frac{1}{p}}} \sum \limits _{k=n}^{n+M^{\frac{1}{p}}-1}\frac{k\ln k}{\ln k}\left| b_{k}\right| \\&\le \frac{\pi \varepsilon }{\ln 2}. \end{aligned}$$

Using Lemma 3 we get

$$\begin{aligned} \left| \tau _{n}^{(5)}(x)\right|&=\left| \sum \limits _{k=n+M^{ \frac{1}{p}}}^{n+M}b_{k}\sin (ckx)\right| \le \sum \limits _{k=n+M^{\frac{ 1}{p}}}^{n+M}\frac{k\ln k}{k\ln k}\left| b_{k}\right| \ll \varepsilon \int _{n+M^{\frac{1}{p}}}^{n+M}\frac{1}{k\ln k}dk \\&\le \varepsilon \ln p. \end{aligned}$$

If \(\left( b_{n}\right) \in GM\left( p,{}_{3}\beta (q),r\right) \), then by Lemma 1

$$\begin{aligned} \bigg \vert \tau _{n}&{}^{\left( 6\right) }\left( x\right) \bigg \vert =\left| \sum \limits _{j=0}^{\infty }\sum \limits _{k=2^{j}\left( n+M+1\right) }^{2^{j+1}\left( n+M+1\right) -1}b_{k}\sin (ckx)\right| \\&\le \sum \limits _{j=0}^{\infty }\left| \frac{-1}{2\sin \left( crx/2\right) }\left\{ \sum \limits _{k=2^{j}\left( n+M+1\right) }^{2^{j+1}\left( n+M+1\right) -1}\left( b_{k}-b_{k+r}\right) \cos \left( \left( k+\frac{r}{2}\right) cx\right) \right. \right. \\&\quad \left. \left. +\sum \limits _{k=2^{j+1}\left( n+M+1\right) }^{2^{j+1}\left( n+M+1\right) +r-1}b_{k}\cos \left( k-\frac{r}{2}\right) cx-\sum \limits _{k=2^{j}\left( n+M+1\right) }^{2^{j}\left( n+M+1\right) +r-1}b_{k}\cos \left( \left( k-\frac{r}{2}\right) cx\right) \right\} \right| \\&\le \frac{1}{2\left| \sin \left( crx/2\right) \right| } \sum \limits _{j=0}^{\infty }\left\{ \sum \limits _{k=2^{j}\left( n+M+1\right) }^{2^{j+1}\left( n+M+1\right) -1}\left| b_{k}-b_{k+r}\right| +\sum \limits _{k=2^{j+1}\left( n+M+1\right) }^{2^{j+1}\left( n+M+1\right) +r-1}\left| b_{k}\right| \right. \\&\quad \left. +\sum \limits _{k=2^{j}\left( n+M+1\right) }^{2^{j}\left( n+M+1\right) +r-1}\left| b_{k}\right| \right\} . \end{aligned}$$

Next, applying the Hölder inequality with \(p>1\), then using Lemma 1, the inequality

\(2\left( l+1\right) -\frac{rc}{\pi }x\le \left| \sin \frac{rcx}{2} \right| \) \(\left( x\in \left[ \frac{2\,l\pi }{rc}+\frac{\pi }{rc},\frac{ 2\left( l+1\right) \pi }{rc}\right] \text { and }0<2\left( l+1\right) \le r\right) \), (4.6) and (4.1), we get

$$\begin{aligned} \bigg \vert \tau&{}_{n}^{\left( 6\right) }\left( x\right) \bigg \vert \le \frac{1}{2(l+1)-\frac{rc}{\pi }x}\sum \limits _{j=0}^{\infty }\left\{ \left( \sum \limits _{k=2^{j}\left( n+M+1\right) }^{2^{j+1}\left( n+M+1\right) -1}\left| b_{k}-b_{k+r}\right| ^{p}\right) ^{\frac{1}{p}}\right. \\&\quad \left. \left( \sum \limits _{k=2^{j}\left( n+M+1\right) }^{2^{j+1}\left( n+M+1\right) -1}1\right) ^{1-\frac{1}{p}} +\sum \limits _{k=2^{j}\left( n+M+1\right) }^{2^{j}\left( n+M+1\right) +r-1}\left| b_{k}\right| +\sum \limits _{k=2^{j+1}\left( n+M+1\right) }^{2^{j+1}\left( n+M+1\right) +r-1}\left| b_{k}\right| \right\} \\&\le \frac{(M+1)^{\frac{1}{p}}}{r}\sum \limits _{j=0}^{\infty }\left\{ \frac{ C\left( 2^{j}(n+M+1)\right) ^{1-\frac{1}{p}}}{2^{j}(n+M+1)}\underset{m\ge b\left( 2^{j}(n+M+1)\right) }{\sup }m\left( \frac{1}{m}\sum \limits _{k=m}^{2m-1}\left| b_{k}\right| ^{q}\right) ^{\frac{1}{q} }\right. \\&\quad \left. +\sum \limits _{k=2^{j}\left( n+M+1\right) }^{2^{j}\left( n+M+1\right) +r-1}\left| b_{k}\right| +\sum \limits _{k=2^{j+1}\left( n+M+1\right) }^{2^{j+1}\left( n+M+1\right) +r-1}\left| b_{k}\right| \right\} =\frac{(M+1)^{\frac{1}{p}}}{r} \sum \limits _{j=0}^{\infty } \\&\quad \bigg \{\frac{C}{ \left( 2^{j}(n+M+1)\right) ^{\frac{1}{p}}}\underset{m\ge b\left( 2^{j}(n+M+1)\right) }{\sup }m^{1-\frac{1}{q}}\left( \sum \limits _{k=m}^{2m-1}\left( \frac{k\ln k\left| b_{k}\right| }{ k\ln k}\right) ^{q}\right) ^{\frac{1}{q}} \\&\quad \left. +\sum \limits _{k=2^{j}\left( n+M+1\right) }^{2^{j}\left( n+M+1\right) +r-1}\frac{k\ln k\left| b_{k}\right| }{k\ln k}+\sum \limits _{k=2^{j+1}\left( n+M+1\right) }^{2^{j+1}\left( n+M+1\right) +r-1} \frac{k\ln k\left| b_{k}\right| }{k\ln k}\right\} \\&<\frac{\varepsilon (M+1)^{\frac{1}{p}}}{r}\sum \limits _{j=0}^{\infty }\left\{ \frac{C}{\left( 2^{j}(n+M+1)\right) ^{\frac{1}{p}}}\underset{m\ge b\left( 2^{j}(n+M+1)\right) }{\sup }m^{1-\frac{1}{q}}\right. \\&\quad \left. \left( \sum \limits _{k=m}^{2m-1}\left( \frac{1}{k}\right) ^{q}\right) ^{\frac{1}{q} } +\sum \limits _{k=2^{j}\left( n+M+1\right) }^{2^{j}\left( n+M+1\right) +r-1}\frac{1}{k}+\sum \limits _{k=2^{j+1}\left( n+M+1\right) }^{2^{j+1}\left( n+M+1\right) +r-1}\frac{1}{k}\right\} . \end{aligned}$$

Elementary calculations give

$$\begin{aligned} \bigg \vert \tau&{}_{n}^{\left( 6\right) }\left( x\right) \bigg \vert <\frac{ \varepsilon (M+1)^{\frac{1}{p}}}{r}\sum \limits _{j=0}^{\infty }\left\{ \frac{C }{\left( 2^{j}(n+M+1)\right) ^{\frac{1}{p}}}\underset{m\ge b\left( 2^{j}(n+M+1)\right) }{\sup } \right. \\&\quad \left. \left( m^{1-\frac{1}{q}}m^{-1}m^{\frac{1}{q} }\right) +r\left( 2^{j}(n+M+1)\right) ^{-\frac{1}{p}}+\frac{1}{2}r\left( 2^{j}(n+M+1)\right) ^{-\frac{1}{p}}\right\} \\&\le \frac{\varepsilon (M+1)^{\frac{1}{p}}}{r}\sum \limits _{j=0}^{\infty }\left\{ \left( 2^{j}(n+M+1)\right) ^{-\frac{1}{p}}\left( C+\frac{3}{2} r\right) \right\} \\&\le \frac{\varepsilon (M+1)^{\frac{1}{p}}\left( C+\frac{3}{2}r\right) }{ r\left( (n+M+1)\right) ^{\frac{1}{p}}}\sum \limits _{j=0}^{\infty }\left( \frac{1}{2^{\frac{1}{p}}}\right) ^{j}\le \frac{\varepsilon \left( C+\frac{3 }{2}r\right) }{r}\frac{1}{1-2^{-\frac{1}{p}}}. \end{aligned}$$

Joining the obtained estimates the uniform convergence of series (1.2) follows and thus the proof is complete. \(\square \)

4.2 Proof of Proposition 1

Let for \(n \in \mathbb {N}\):

\(a_n =\left\{ \begin{array}{l} \frac{3}{n\ln (n+1)},\text { when } n=1\text { (mod }3), \\ \frac{1}{n\ln (n+1)},\text { when } n=2\text { (mod }3), \\ \frac{1}{n\ln (n+1)},\text { when } n=0\text { (mod }3) \text { and } n\ne 0 \text { (mod }6), \\ \frac{1}{(n-3)\ln (n-2)} + \frac{1}{n^{1+\frac{1}{p}}\ln (n+1)},\text { when } n=0\text { (mod }6). \end{array} \right. \)

First, we prove that \((a_{n})\in GM(p,{}_{3}\beta (1),3)\) for \(p>1\). Let

$$\begin{aligned}&A_{n}=\{k\in \mathbb {N}:n\le k\le 2n-1\text { and }k=1\text { }(\text {mod }3)\},\\&B_{n}=\{k\in \mathbb {N}:n\le k\le 2n-1\text { and }k=2\text { }(\text {mod }3)\},\\&C_{n}=\{k\in \mathbb {N}:n\le k\le 2n-1\text { and }k=0\text { }(\text {mod }3) \text { and }k\ne 0\text { }(\text {mod }6)\}, \\&D_{n}=\{k\in \mathbb {N}:n\le k\le 2n-1\text { and }k=0\text { }(\text {mod }6)\}. \end{aligned}$$

Using elementary calculations we get

$$\begin{aligned} \begin{aligned}&\left\{ \sum _{k=n}^{2n-1} \left| a_{k}-a_{k+3}\right| ^{p}\right\} ^{ \frac{1}{p}}=\left\{ \sum _{k\in A_{n}}\left| a_{k}-a_{k+3}\right| ^{p}+\sum _{k\in B_{n}}\left| a_{k}-a_{k+3}\right| ^{p}\right. \\ {}&\qquad \left. +\sum _{k\in C_{n}}\left| a_{k}-a_{k+3}\right| ^{p} +\sum _{k\in D_{n}}\left| a_{k}-a_{k+3}\right| ^{p}\right\} ^{ \frac{1}{p}}=\left\{ \sum _{k\in A_{n}}\left| \frac{3}{k\ln (k+1)} \right. \right. \\ {}&\qquad \left. -\frac{3 }{(k+3)\ln (k+4)}\right| ^{p} +\sum _{k\in B_{n}}\left| \frac{1}{k\ln (k+1)}-\frac{1}{(k+3)\ln (k+4)} \right| ^{p} \\ {}&\qquad +\sum _{k\in C_{n}}\left| \frac{1}{k\ln (k+1)}-\frac{1}{k\ln (k+1)}-\frac{ 1}{(k+3)^{1+\frac{1}{p}}\ln (k+4)}\right| ^{p} \\ {}&\qquad \left. +\sum _{k\in D_{n}}\left| \frac{1}{(k-3)\ln (k-2)}+\frac{1}{k^{1+ \frac{1}{p}}\ln (k+1)}-\frac{1}{(k+3)\ln (k+4)}\right| ^{p}\right\} ^{ \frac{1}{p}} \\ {}&\quad =\left\{ \sum _{k\in A_{n}}3^{p}\left| \frac{1}{k\ln (k+1)}-\frac{1}{ (k+3)\ln (k+4)}\right| ^{p}+ \sum _{k\in B_{n}}\left| \frac{1}{k\ln (k+1)} \right. \right. \\ {}&\qquad \left. -\frac{1}{(k+3)\ln (k+4)}\right| ^{p} +\sum _{k\in C_{n}}\left| \frac{1}{(k+3)^{1+\frac{1}{p}}\ln (k+4)} \right| ^{p} \\ {}&\qquad \left. +\sum _{k\in D_{n}}\left( \left| \frac{1}{(k-3)\ln (k-2)}-\frac{1}{ (k+3)\ln (k+4)} +\frac{1}{k^{1+\frac{1}{p}}\ln (k+1)}\right| \right) ^{p}\right\} ^{\frac{1}{p}}. \end{aligned} \end{aligned}$$

Moreover

$$\begin{aligned} \bigg \vert \frac{1}{k\ln (k+1)}&-\frac{1}{(k+3)\ln (k+4)}\bigg \vert =\frac{ \left| (k+3)\ln (k+4)-k\ln (k+1)\right| }{k(k+3)\ln (k+1)\ln (k+4)} \\&\le \frac{\frac{3k}{k+1}+3\ln (k+4)}{k(k+3)\ln (k+1)\ln (k+4)} \\&\le \frac{ 6\ln (k+4)}{k^{2}\ln (k+1)\ln (k+4)}=\frac{6}{k^{2}\ln (k+1)} \end{aligned}$$

for \(k\ge 1\) and

$$\begin{aligned} \bigg \vert \frac{1}{(k-3)\ln (k-2)}&-\frac{1}{(k+3)\ln (k+4)}\bigg \vert = \frac{\left| (k+3)\ln (k+4)-(k-3)\ln (k-2)\right| }{(k-3)(k+3)\ln (k-2)\ln (k+4)} \\&\le \frac{(k-3)\left| \ln (k+4)-\ln (k-2)\right| +6\ln (k+4)}{ (k-3)(k+3)\ln (k-2)\ln (k+4)} \\&\le \frac{\frac{6(k-3)}{k-2}+6\ln (k+4)}{(k-3)(k+3)\ln (k-2)\ln (k+4)} \\&\le \frac{12}{(k-3)(k+3)\ln (k-2)} \le \frac{48}{k^{2}\ln (k+1)} \end{aligned}$$

for \(k\ge 6\). Thus

$$\begin{aligned} \bigg \{ \sum _{k=n}^{2n-1}&\left| a_{k}-a_{k+3}\right| ^{p}\bigg \} ^{ \frac{1}{p}}\le \left\{ \sum _{k\in A_{n}}3^{p}\left( \frac{6}{k^{2}\ln (k+1) }\right) ^{p}+\sum _{k\in B_{n}}\left( \frac{6}{k^{2}\ln (k+1)}\right) ^{p}\right. \\&\quad \left. +\sum _{k\in C_{n}}\left( \frac{1}{k^{1+\frac{1}{p}}\ln (k+1)}\right) ^{p}+\sum _{k\in D_{n}}\left( \frac{48}{k^{2}\ln (k+1)}+\frac{1}{k^{1+\frac{1 }{p}}\ln (k+1)}\right) ^{p}\right\} ^{\frac{1}{p}} \\&\le 49\left\{ \sum _{k=n}^{2n-1}\left( \frac{1}{k^{1+\frac{1}{p}}\ln (k+1)} \right) ^{p}\right\} ^{\frac{1}{p}}\le 49\frac{1}{n^{1+\frac{1}{p}}\ln (n+1) }n^{\frac{1}{p}} \\&=49\frac{1}{n\ln (n+1)} \le 147\frac{1}{n} \sum _{k=n}^{2n}\left| a_{k} \right| \le 147 \frac{1}{n} \underset{m\ge b(n)}{\sup } \sum \limits _{k=m}^{2m} \left| a_{k}\right| . \end{aligned}$$

Hence \((a_{n})\in GM(p,{}_{3}\beta (1),3)\). Now, we will show that \( (a_{n})\notin GM(1,{}_{3}\beta (1),3)\). We have

$$\begin{aligned} \sum _{k=n}^{2n-1} \left| a_{k}-a_{k+3}\right|&\ge \sum _{k\in C_{n}}\left| a_{k}-a_{k+3}\right| =\sum _{k\in C_{n}}\left| \frac{ 1}{k\ln (k+1)}-\frac{1}{k\ln (k+1)} \right. \\&\qquad \left. -\frac{1}{(k+3)^{1+\frac{1}{p}}\ln (k+4)} \right| =\sum _{k\in C_{n}}\frac{1}{(k+3)^{1+\frac{1}{p}}\ln (k+4)} \\&\ge \frac{1}{ (n+3)^{1+\frac{1}{p}}\ln (n+4)}\frac{n}{12} \ge \frac{1}{48(n+3)^{\frac{1}{p} }\ln (n+4)}. \end{aligned}$$

On the other hand, we get

$$\begin{aligned} \begin{aligned} \frac{1}{n} \underset{m\ge b(n)}{\sup }\ \sum \limits _{k=m}^{2m} \left| a_{k}\right| \le C\frac{1}{n}. \end{aligned} \end{aligned}$$

Therefore, the inequality

$$\begin{aligned} \sum _{k=n}^{2n}\left| a_{k}-a_{k+3}\right| \le C\frac{1}{n} \underset{m\ge b(n)}{\sup } \sum \limits _{k=m}^{2m} \left| a_{k}\right| . \end{aligned}$$

can not be satisfied if \(n\rightarrow \infty \).

Now, we will show that the series (1.2) is divergent in \(x_0 = \frac{ 2}{3}\pi \). We have

$$\begin{aligned} \begin{aligned} \sum _{k=6}^{6N+5}&a_k \sin (kx_0) = \sum _{k=1}^{N} \sum _{l=0}^{5} a_{6k+l} \sin \left( (6k+l)\frac{2}{3}\pi \right) = \sum _{k=1}^{N} \left( a_{6k} \sin (4\pi ) \right. \\ {}&\quad + a_{6k+1} \sin \left( (6k+1)\frac{2}{3}\pi \right) + a_{6k+2} \sin \left( (6k+2)\frac{2}{3}\pi \right) + a_{6k+3} \sin \left( (6k+3)\frac{2}{3}\pi \right) \\ {}&\quad \left. + a_{6k+4} \sin \left( (6k+4)\frac{2}{3}\pi \right) + a_{6k+5} \sin \left( (6k+5)\frac{2}{3}\pi \right) \right) \\ {}&= \sum _{k=1}^{N} \left( a_{6k+1} \sin \left( \frac{2}{3}\pi \right) + a_{6k+2} \left( -\sin \left( \frac{2}{3}\pi \right) \right) + a_{6k+4} \sin \left( \frac{2}{3}\pi \right) \right. \\ {}&\quad \left. + a_{6k+5} \left( -\sin \left( \frac{2}{3}\pi \right) \right) \right) = \sin \left( \frac{2}{3}\pi \right) \sum _{k=1}^{N} \left[ \left( a_{6k+1} - a_{6k+2} \right) + \left( a_{6k+4} - a_{6k+5} \right) \right] \\ {}&= \sin \left( \frac{2}{3}\pi \right) \sum _{k=1}^{N} \left[ \left( \frac{3}{(6k+1)\ln (6k+2)} - \frac{1}{(6k+2)\ln (6k+3)} \right) \right. \\ {}&\quad \left. + \left( \frac{3}{(6k+4)\ln (6k+5)} - \frac{1}{(6k+5)\ln (6k+6)} \right) \right] \\ {}&\ge \sin \left( \frac{2}{3}\pi \right) \sum _{k=1}^{N} \left[ \left( \frac{3}{ (6k+2)\ln (6k+2)} - \frac{1}{(6k+2)\ln (6k+2)} \right) \right. \\ {}&\left. + \left( \frac{3}{(6k+5)\ln (6k+5)} - \frac{1}{(6k+5)\ln (6k+5)} \right) \right] \\ {}&= \sin \left( \frac{2}{3}\pi \right) \sum _{k=1}^{N} \left( \frac{2}{(6k+2)\ln (6k+2)} + \frac{2}{(6k+5)\ln (6k+5)} \right) \\ {}&\ge 4\sin \left( \frac{2}{3} \pi \right) \sum _{k=1}^{N} \frac{1}{(6k+5)\ln (6k+5)} \rightarrow \infty \text{ as } N\rightarrow \infty . \end{aligned}\end{aligned}$$

This ends our proof. \(\square \)

4.3 Proof of Theorem 11

The proof is similar to the proof of Theorem 10. The only difference is that we use (2.3) and (3.2) instead of (2.2) and (3.1), respectively. \(\square \)

4.4 Proof of Theorem 12

The proof is similar to the proof of Theorem 10. The only difference is that we use (2.4) and Lemma 2 instead of (3.1) and Lemma 1, respectively. \(\square \)