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1. Introduction

It is well known that there is a great number of interesting results in Fourier
analysis established by assuming monotonicity of Fourier coefficients. The fol-
lowing classical convergence result can be found in many monographs (see for
example [3,18] or [1]).

Theorem 1. Suppose that bn ≥ bn+1 and bn → 0 as n → ∞. Then a necessary
and sufficient condition for the uniform convergence of the series

∞∑

n=1

bn sin nx (1.1)

is nbn → 0 as n → ∞.

This result has been generalized by weakening the monotonicity condi-
tions of the coefficient (see for example [2,14]). We present below a historical
outline of the generalizations of this theorem.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00025-023-02011-4&domain=pdf
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In 2001 Leindler defined (see [8] and [10]) a new class of sequences named
as sequences of Rest Bounded Variation, briefly denoted by RBV S, i.e.,

RBV S =

{
a := (an) ∈ C :

∞∑

n=m

|Δ1an| ≤ C |am| for all m ∈ N

}
,

where here and throughout the paper C = C (a) always indicates a constant
only depending on a and Δran = an − an+r for r ∈ N.

Denote by MS the class of monotone decreasing sequences, then it is
clear that

MS � RBV S.

Further, Tikhonov introduced a class of General Monotone Sequences GMS
defined as follows (see [16]):

GMS =

{
a := (an) ∈ C :

2m−1∑

n=m

|Δ1an| ≤ C |am| for all m ∈ N

}
.

It is clear that

RBV S � GMS.

The class of GMS was generalized by Tikhonov (see [15]) and indepen-
dently by Zhou, Zhou and Yu (see [17]) to the class of Mean Value Bounded
Variation Sequences (MV BV S). We say that a sequence a := (an) of complex
numbers is said to be MV BV S if there exists λ ≥ 2 such that

2n−1∑

k=n

|Δ1ak| ≤ C

n

λn∑

k=[n/λ]

|ak|

holds for n ∈ N, where [x] is the integer part of x. They proved also in [17]
that

GMS � MV BV S.

Theorem 1 was generalized for the class RBV S in [8], for the class GMS
in [16] and for the class MV BV S in [17].

Next, Tikhonov [13,15,16] and Leindler [9] defined the class of β—general
monotone sequences as follows:

Definition 1. Let β := (βn) be a nonnegative sequence. The sequence of com-
plex numbers a := (an) is said to be β− general monotone, or a ∈ GM (β), if
the relation

2m−1∑

n=m

|Δ1an| ≤ Cβm

holds for all m ∈ N.

In the paper [15] Tikhonov considered i.e. the following examples of the
sequences βn:
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(1) 1βn = |an| ,
(2) 2βn =

∑[cn]
k=[n/c]

|ak|
k for some c > 1.

It is clear that GM (1β) = GMS. Moreover, Tikhonov showed in [15]
that

GM (1β) � GM (2β) ≡ MVBVS.

Tikhonov proved also in [15] the following theorem:

Theorem 2. Let a sequence (bn) ∈ GM(2β). If n|bn| → 0 as n → ∞, then the
series (1.1) converges uniformly.

Further, Szal defined a new class of sequences in the following way (see
[11]):

Definition 2. Let β := (βn) be a nonnegative sequence and r a natural number.
The sequence of complex numbers a := (an) is said to be (β, r) −general
monotone, or a ∈ GM (β, r), if the relation

2m−1∑

n=m

|Δran| ≤ Cβm

holds for all m ∈ N.

It is clear that GM (β, 1) ≡ GM (β). Moreover, it is easy to show that
the sequence

an =
(−1)n

n

belongs to GM (1β, 2) and does not belong to GM (1β). This example shows
that the class GM (1β) is essentially wider than the class GM (1β). In [11]
Szal showed more general relations

GM(2β, 1) � GM(2β, r)

for all r > 1.
In the paper [11] Szal generalized Theorem 1 by proving the following

theorem.

Theorem 3 [11]. Let a sequence (bn) ∈ GM (2β, r), where r ∈ N. If n|bn| → 0
as n → ∞ and

∞∑

n=1

[r/2]∑

k=1

|br·n+k − br·n+r−k| < ∞ for r ≥ 3,

then the series (1.1) converges uniformly.

In the paper [4] Kórus defined a new class of sequences in the following
way:
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Definition 3. The sequence of complex numbers a := (an) is in the class
SBV S2 (Supremum Bounded Variation Sequence), if the relation

2m−1∑

n=m

|Δ1an| ≤ C

n
sup

m≥b(n)

2m∑

k=m

|ak|

holds for all m ∈ N, where (b(n)) is a nonnegative sequence tending monoton-
ically to infinity depending only on a.

In the paper [4] Kórus also proved the following theorem:

Theorem 4. Let a sequence (bn) ∈ SBV S2. If n|bn| → 0 as n → ∞, then the
series (1.1) converges uniformly.

Next Tikhonov and Liflyand defined a class of GMSp(β) in the following
way (see [7], [6]):

Definition 4. Let β = (βn) be a nonnegative sequence and p a positive real
number. We say that a sequence of complex numbers a = (an) ∈ GMSp(β) if
the relation

(
2m−1∑

n=m

|Δ1an|p
) 1

p

≤ Cβm

holds for all m ∈ N.

It is clear that GMS1(β) = GM(β).
The latest class of sequences was defined by Kubiak and Szal in [5] as

follows:

Definition 5. Let β := (βn) be a nonnegative sequence, r a natural number
and p a positive real number. The sequence of complex numbers a := (an) is
said to be (p, β, r) − general monotone, or a ∈ GM (p, β, r), if the relation

(
2m−1∑

n=m

|Δran|p
) 1

p

≤ Cβm

holds for all m ∈ N.

It is clear that GM(p, β, 1) = GMSp(β) and GM(1, β, r) = GM(β, r).
Further we will consider the following sequence:

3βn(q) =
1
n

sup
m≥b(n)

m

(
1
m

2m∑

k=m

|ak|q
) 1

q

,

where (an) ⊂ C, an → 0 as n → ∞, q > 0, (b(n)) is a nonnegative sequence
such that b(n) ↗ and b(n) → ∞ as n → ∞. It is clear that SBV S2 =
GM(1, 3β(1), 1).
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In the further part of our paper we will consider the following series:
∞∑

n=1

bn sin(cnx), (1.2)

∞∑

n=1

an cos(cnx), (1.3)

∞∑

n=1

cneicnx, (1.4)

where c > 0.

In the paper [5] Kubiak and Szal showed the following embedding rela-
tions:

Theorem 5. Let q > 0, r ∈ N and 0 < p1 ≤ p2. Then

GM(p1, 3β(q), r) ⊆ GM(p2, 3β(q), r).

Theorem 6. Let p ≥ 1, q > 0, r1, r2 ∈ N, r1 ≤ r2. If r1 | r2, then

GM(p, 3β(q), r1) ⊆ GM(p, 3β(q), r2).

Moreover they proved in [5] the following generalization of Theorem 1:

Theorem 7. Let a sequence (bn) ∈ GM (p, 3β(q), r), where p, q ≥ 1, r ∈ N and
b(n) ≥ n for n ∈ N. If

n2− 1
p |bn| → 0 as n → ∞ (1.5)

and
∞∑

k=1

bk sin
(

2lπ

r
k

)
< ∞, for r ≥ 3,

for all l = 1, ..., [ r
2 ] − 1 when r is an even number and l = 1, ..., [ r

2 ] when r is
an odd number, then the series (1.2) is uniformly convergent.

Theorem 8. Let a sequence (an) ∈ GM (p, 3β(q), r), where p, q ≥ 1, r ∈ N and
b(n) ≥ n for n ∈ N. If

n2− 1
p |an| → 0 as n → ∞

and
∞∑

k=1

ak cos
(

2lπ

r
k

)
< ∞,

for all l = 0, 1, ..., [ r
2 ], then the series (1.3) is uniformly convergent.
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Theorem 9. Let a sequence (cn) ∈ GM (p, 3β(q), r), where p, q ≥ 1, r ∈ N and
b(n) ≥ n for n ∈ N. If

n2− 1
p |cn| → 0 as n → ∞

and
∞∑

k=1

cke(
2lπ
r k)i < ∞,

for all l = 0, 1, ..., [ r
2 ], then the series (1.4) is uniformly convergent.

In this paper we will show that Theorems 7, 8, 9 are true under weakened
assumptions in case p > 1.

2. Main Results

We have the following results:

Theorem 10. Let a sequence (bn) ∈ GM (p, 3β(q), r), where q ≥ 1, p > 1 and
r ∈ N. If

n ln n |bn| → 0 as n → ∞ (2.1)

and
∞∑

k=1

bk sin
(

2lπ

r
k

)
< ∞, for r ≥ 3, (2.2)

for all l = 1, ..., [ r
2 ] − 1 when r is an even number and l = 1, ..., [ r

2 ] when r is
an odd number, then the series (1.2) is uniformly convergent.

Proposition 1. There exist an x0 ∈ R and a sequence (bn) ∈ GM(p, 3β(1), 3)
for p > 1 with the properties nbn → 0 as n → ∞ and (bn) /∈ GM(1, 3β(1), 3),
for which the series (1.2) is divergent in x0.

Theorem 11. Let a sequence (an) ∈ GM (p, 3β(q), r), where q ≥ 1, p > 1 and
r ∈ N. If

n ln n |an| → 0 as n → ∞
and

∞∑

k=1

ak cos
(

2lπ

r
k

)
< ∞, (2.3)

for all l = 0, 1, ..., [ r
2 ], then the series (1.3) is uniformly convergent.
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Theorem 12. Let a sequence (cn) ∈ GM (p, 3β(q), r), where q ≥ 1, p > 1 and
r ∈ N. If

n ln n |cn| → 0 as n → ∞
and

∞∑

k=1

cke(
2lπ
r k)i < ∞, (2.4)

for all l = 0, 1, ..., [ r
2 ], then the series (1.4) is uniformly convergent.

Remark 1. It is clear that if a sequence (bn) satisfies the condition (2.1) then
it fulfills the condition (1.5) with p > 1, too. Therefore, from Theorem 10 we
get Theorem 7 is case p > 1. The same remark applies to Theorems 11, 8 and
Theorems 12, 9, respectively.

3. Lemma

Denote, for r ∈ N and k = 0, 1, 2... by

D̃k,r(x) =
cos

(
k + r

2

)
x

2 sin rx
2

, Dk,r(x) =
sin

(
k + r

2

)
x

2 sin rx
2

the Dirichlet type kernels.

Lemma 1 . [11,12] Let r,m, n ∈ N, l ∈ Z and (ak) ⊂ C. If x �= 2lπ
r , then for

m ≥ n

m∑

k=n

aksin(kx) = −
m∑

k=n

ΔrakD̃k,r(x) +
m+r∑

k=m+1

akD̃k,−r(x)

+
n+r−1∑

k=n

akD̃k,−r(x) (3.1)

and

m∑

k=n

ak cos kx =
m∑

k=n

ΔrakD̃k,r(x) −
m+r∑

k=m+1

akD̃k,−r(x)

+
n+r−1∑

k=n

akD̃k,−r(x). (3.2)
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Lemma 2 [5]. Let r,m, n ∈ N, l ∈ Z and a = (an) ⊂ C. If x �= 2lπ
r , then for

m ≥ n
m∑

k=n

akeikx =
−i

2 sin
(

rx
2

)
(

m∑

k=n

Δrake−i(k+ r
2 )x −

m+r∑

k=m+1

ake−i(k− r
2 )x

+
n+r−1∑

k=n

ake−i(k− r
2 )x

)
.

Lemma 3. Let n,N ∈ N. Then for p ≥ 1
∫ n+N

n+N
1
p

1
k ln k

dk ≤ ln p.

Proof. This inequality is true for p = 1. Consider the function

f(p) =
(
n + N

1
p

)p

for p > 0. We get:

f ′(p) ≥
(
n + N

1
p

)p−1 1
p
n ln N ≥ 0 for all p > 0.

It means that the function is non-decresing with respect to p.
Thus:

n + N = f(1) ≤ f(p) =
(
n + N

1
p

)p

for p ≥ 1.

Hence we get that:

ln (n + N) ≤ ln
(
n + N

1
p

)p

. (3.3)

Therefore, integrating by substitution with ln k = t and using (3.3), we get
∫ n+N

n+N
1
p

1
k ln k

dk =
∫ ln(n+N)

ln(n+N)
1
p

1
t
dt = ln(ln(n + N)) − ln(ln(n + N

1
p ))

= ln

⎛

⎝ ln(n + N)

ln
(
n + N

1
p

)

⎞

⎠ = ln

⎛

⎝p
ln (n + N)

ln
(
n + N

1
p

)p

⎞

⎠ ≤ ln p

and the proof is completed. �

4. Proofs of the Main Results

4.1. Proof of the Theorem 10

Let ε > 0. Then from (2.1) and (2.2) we obtain:

n ln n |bn| < ε, (4.1)∣∣∣∣∣

∞∑

k=n

bk sin
(

k
2lπ

r

)∣∣∣∣∣ < ε, (4.2)
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and
∣∣∣∣∣

n+N∑

k=n

bk sin
(

k
2lπ

r

)∣∣∣∣∣ < ε, (4.3)

for all n > Nε and N ∈ N, where l = 1, ..., [ r
2 ] − 1 when r is an even number

and l = 1, ..., [ r
2 ] when r is an odd number. Denote by

τn (x) =
∞∑

k=n

bk sin(ckx).

We will show that

|τn (x)| � ε (4.4)

holds for any n ≥ max{Nε, 2} and x ∈ R. Since τn (0) = 0 and τn

(
π
c

)
= 0 it

suffices to prove (4.4) for 0 < x < π
c .

First, we will show that (4.4) is valid for x = 2 lπ
rc , where l is an integer

number such that 0 < 2 l < r. Using (4.2) we get
∣∣∣∣τn

(
2lπ

rc

)∣∣∣∣ < ε.

Now, we prove that (4.4) holds for 2 lπ
rc < x ≤ 2 lπ

rc + π
rc , where 0 ≤ 2 l < r.

Let N
1
p := N

1
p (x) ≥ r be a natural number such that

2lπ

rc
+

π

c(N + 1)
1
p

< x ≤ 2lπ

rc
+

π

cN
1
p

. (4.5)

Then

τn (x) =
n+N

1
p −1∑

k=n

bk sin(ckx) +
n+N∑

k=n+N
1
p

bk sin(ckx) +
∞∑

k=n+N+1

bk sin(ckx)

= τ (1)
n (x) + τ (2)

n (x) + τ (3)
n (x) .

Applying Lagrange’s mean value theorem to the function f (x) = sin(ckx) on
the interval

[
2 lπ
rc , x

]
we obtain that for each k there exists yk ∈ (

2 lπ
rc , x

)
such

that

sin(ckx) − sin
(

k
2lπ

r

)
= ck cos(ckyk)

(
x − 2lπ

rc

)
.

Using this we get

τ (1)
n (x) =

n+N
1
p −1∑

k=n

ckbk cos(ckyk)
(

x − 2lπ

rc

)
+

n+N
1
p −1∑

k=n

bk sin
(

k
2lπ

r

)

= τ (1.1)
n (x) + τ (1.2)

n (x).
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From (4.3) we have
∣∣∣τ (1.2)

n (x)
∣∣∣ < ε.

By (4.5) and (4.1)

∣∣∣τ (1.1)
n (x)

∣∣∣ ≤
(

x − 2lπ

rc

) n+N
1
p −1∑

k=n

ck |bk| ≤
(

x − 2lπ

rc

) n+N
1
p −1∑

k=n

ck ln k

ln k
|bk|

<

(
x − 2lπ

rc

) n+N
1
p −1∑

k=n

cε

ln k
≤ πε

ln 2
.

Using Lemma 3 we obtain

∣∣∣τ (2)
n (x)

∣∣∣ =

∣∣∣∣∣∣∣

n+N∑

k=n+N
1
p

bk sin(ckx)

∣∣∣∣∣∣∣
≤

n+N∑

k=n+N
1
p

k ln k

k ln k
|bk| � ε

∫ n+N

n+N
1
p

1
k ln k

dk

≤ ε ln p.

If (bn) ∈ GM (p, 3β(q), r), then using Lemma 1, we get

∣∣∣∣τn
(3) (x)

∣∣∣∣ =

∣∣∣∣∣∣

∞∑

j=0

2j+1(n+N+1)−1∑

k=2j(n+N+1)

bk sin(ckx)

∣∣∣∣∣∣

≤
∞∑

j=0

∣∣∣∣∣∣
−1

2 sin (crx/2)

⎧
⎨

⎩

2j+1(n+N+1)−1∑

k=2j(n+N+1)

(bk − bk+r) cos
(
k +

r

2

)
cx

+

2j+1(n+N+1)+r−1∑

k=2j+1(n+N+1)

bk cos
(
k − r

2

)
cx −

2j(n+N+1)+r−1∑

k=2j(n+N+1)

bk cos
(
k − r

2

)
cx

⎫
⎬

⎭

∣∣∣∣∣∣

≤ 1

2 |sin (crx/2)|
∞∑

j=0

⎧
⎨

⎩

2j+1(n+N+1)−1∑

k=2j(n+N+1)

|bk − bk+r| +

2j+1(n+N+1)+r−1∑

k=2j+1(n+N+1)

|bk|

+

2j(n+N+1)+r−1∑

k=2j(n+N+1)

|bk|
⎫
⎬

⎭ .

Further applying the Hölder inequality with p > 1, the inequality rc
π x − 2 l ≤∣∣sin rcx

2

∣∣ (x ∈ [
2 lπ
rc , 2 lπ

rc + π
rc

]
and 0 ≤ 2 l < r

)
, (4.5) and (4.1), we obtain

∣∣∣∣τn
(3) (x)

∣∣∣∣ ≤ 1
rc
π x − 2l

∞∑

j=0

⎧
⎪⎨

⎪⎩

⎛

⎝
2j+1(n+N+1)−1∑

k=2j(n+N+1)

|bk − bk+r|p
⎞

⎠

1
p
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⎛

⎝
2j+1(n+N+1)−1∑

k=2j(n+N+1)

1

⎞

⎠
1− 1

p

+
2j(n+N+1)+r−1∑

k=2j(n+N+1)

|bk| +
2j+1(n+N+1)+r−1∑

k=2j+1(n+N+1)

|bk|

⎫
⎪⎬

⎪⎭

≤ (N + 1)
1
p

r

∞∑

j=0

⎧
⎨

⎩
C

(
2j(n + N + 1)

)1− 1
p

2j(n + N + 1)
sup

m≥b(2j(n+N+1))

m

(
1
m

2m−1∑

k=m

|bk|q
) 1

q

+
2j(n+N+1)+r−1∑

k=2j(n+N+1)

|bk| +
2j+1(n+N+1)+r−1∑

k=2j+1(n+N+1)

|bk|
⎫
⎬

⎭

=
(N + 1)

1
p

r

∞∑

j=0

{
C

(2j(n + N + 1))
1
p

sup
m≥b(2j(n+N+1))

m1− 1
q

(
2m−1∑

k=m

(
k ln k |bk|

k ln k

)q
) 1

q

+
2j(n+N+1)+r−1∑

k=2j(n+N+1)

k ln k |bk|
k ln k

+
2j+1(n+N+1)+r−1∑

k=2j+1(n+N+1)

k ln k |bk|
k ln k

⎫
⎬

⎭

<
ε(N + 1)

1
p

r

∞∑

j=0

⎧
⎨

⎩
C

(2j(n + N + 1))
1
p

sup
m≥b(2j(n+N+1))

m1− 1
q

(
2m−1∑

k=m

(
1
k

)q
) 1

q

+
2j(n+N+1)+r−1∑

k=2j(n+N+1)

1
k

+
2j+1(n+N+1)+r−1∑

k=2j+1(n+N+1)

1
k

⎫
⎬

⎭

≤ ε(N + 1)
1
p

r

∞∑

j=0

{
C

(2j(n + N + 1))
1
p

sup
m≥b(2j(n+N+1))

(
m1− 1

q m−1m
1
q

)

+
3
2
r
(
2j(n + N + 1)

)− 1
p

⎫
⎬

⎭ .

Elementary calculations give:

∣∣∣τ (3)
n (x)

∣∣∣ <
ε(N + 1)

1
p

r

∞∑

j=0

{(
2j(n + N + 1)

)− 1
p

(
C +

3
2
r

)}

≤ ε(N + 1)
1
p
(
C + 3

2r
)

r ((n + N + 1))
1
p

∞∑

j=0

(
1

2
1
p

)j

≤ ε
(
C + 3

2r
)

r

1

1 − 2− 1
p

.

Finally, we prove that (4.4) is true for 2 lπ
rc + π

rc ≤ x < 2(l+1)π
rc , where

0 < 2 (l + 1) ≤ r.
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Let M
1
p := M

1
p (x) ≥ r be a natural number such that

2 (l + 1) π

rc
− π

cM
1
p

≤ x <
2 (l + 1) π

rc
− π

c(M + 1)
1
p

. (4.6)

Then

τn (x) =
n+M

1
p −1∑

k=n

bk sin(ckx) +
n+M∑

k=n+M
1
p

bk sin(ckx) +
∞∑

k=n+M+1

bk sin(ckx)

= τ (4)
n (x) + τ (5)

n (x) + τ (6)
n (x) .

Applying Lagrange’s mean value theorem to the function f (x) = sin(ckx) on
the interval

[
x, 2(l+1)π

rc

]
we obtain that for each k there exists zk ∈

(
x, 2(l+1)π

rc

)

such that

sin
(

k
2 (l + 1) π

r

)
− sin(ckx) = ck cos(ckzk)

(
2 (l + 1) π

rc
− x

)
.

Using this we get

τ (4)
n (x) =

n+M
1
p −1∑

k=n

ckbk cos(ckzk)
(

2 (l + 1) π

rc
− x

)

+
n+M

1
p −1∑

k=n

bk sin
(

k
2 (l + 1) π

r

)
= τ (4.1)

n (x) + τ (4.2)
n (x).

From (4.2) we have
∣∣∣τ (4.2)

n (x)
∣∣∣ < ε.

By (4.6) and (4.1)

∣∣∣τ (4.1)
n (x)

∣∣∣ ≤
(

2 (l + 1) π

rc
− x

) n+M
1
p −1∑

k=n

ck |bk| ≤ π

M
1
p

n+M
1
p −1∑

k=n

k ln k

ln k
|bk|

≤ πε

ln 2
.

Using Lemma 3 we get

∣∣∣τ (5)
n (x)

∣∣∣ =

∣∣∣∣∣∣∣

n+M∑

k=n+M
1
p

bk sin(ckx)

∣∣∣∣∣∣∣
≤

n+M∑

k=n+M
1
p

k ln k

k ln k
|bk| � ε

∫ n+M

n+M
1
p

1
k ln k

dk

≤ ε ln p.
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If (bn) ∈ GM (p, 3β(q), r), then by Lemma 1

∣∣∣∣τn
(6) (x)

∣∣∣∣ =

∣∣∣∣∣∣

∞∑

j=0

2j+1(n+M+1)−1∑

k=2j(n+M+1)

bk sin(ckx)

∣∣∣∣∣∣

≤
∞∑

j=0

∣∣∣∣∣∣
−1

2 sin (crx/2)

⎧
⎨

⎩

2j+1(n+M+1)−1∑

k=2j(n+M+1)

(bk − bk+r) cos
((

k +
r

2

)
cx

)

+

2j+1(n+M+1)+r−1∑

k=2j+1(n+M+1)

bk cos
(
k − r

2

)
cx −

2j(n+M+1)+r−1∑

k=2j(n+M+1)

bk cos
((

k − r

2

)
cx

)
⎫
⎬

⎭

∣∣∣∣∣∣

≤ 1

2 |sin (crx/2)|
∞∑

j=0

⎧
⎨

⎩

2j+1(n+M+1)−1∑

k=2j(n+M+1)

|bk − bk+r| +
2j+1(n+M+1)+r−1∑

k=2j+1(n+M+1)

|bk|

+

2j(n+M+1)+r−1∑

k=2j(n+M+1)

|bk|
⎫
⎬

⎭ .

Next, applying the Hölder inequality with p > 1, then using Lemma 1, the
inequality

2 (l + 1)− rc
π x ≤ ∣∣sin rcx

2

∣∣
(
x ∈

[
2 lπ
rc + π

rc , 2(l+1)π
rc

]
and 0 < 2 (l + 1) ≤ r

)
,

(4.6) and (4.1), we get

∣∣∣∣τ
(6)
n (x)

∣∣∣∣ ≤ 1

2(l + 1) − rc
π x

∞∑

j=0

⎧
⎪⎨

⎪⎩

⎛

⎝
2j+1(n+M+1)−1∑

k=2j(n+M+1)

|bk − bk+r|p
⎞

⎠

1
p

⎛

⎝
2j+1(n+M+1)−1∑

k=2j(n+M+1)

1

⎞

⎠
1− 1

p

+

2j(n+M+1)+r−1∑

k=2j(n+M+1)

|bk| +

2j+1(n+M+1)+r−1∑

k=2j+1(n+M+1)

|bk|

⎫
⎪⎬

⎪⎭

≤ (M + 1)
1
p

r

∞∑

j=0

⎧
⎨

⎩
C

(
2j(n + M + 1)

)1− 1
p

2j(n + M + 1)
sup

m≥b(2j(n+M+1))

m

(
1

m

2m−1∑

k=m

|bk|q
) 1

q

+

2j(n+M+1)+r−1∑

k=2j(n+M+1)

|bk| +

2j+1(n+M+1)+r−1∑

k=2j+1(n+M+1)

|bk|
⎫
⎬

⎭ =
(M + 1)

1
p

r

∞∑

j=0

{
C

(2j(n + M + 1))
1
p

sup
m≥b(2j(n+M+1))

m
1− 1

q

(
2m−1∑

k=m

(
k ln k |bk|

k ln k

)q
) 1

q

+

2j(n+M+1)+r−1∑

k=2j(n+M+1)

k ln k |bk|
k ln k

+

2j+1(n+M+1)+r−1∑

k=2j+1(n+M+1)

k ln k |bk|
k ln k

⎫
⎬

⎭

<
ε(M + 1)

1
p

r

∞∑

j=0

{
C

(2j(n + M + 1))
1
p

sup
m≥b(2j(n+M+1))

m
1− 1

q
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(
2m−1∑

k=m

(
1

k

)q
) 1

q

+

2j(n+M+1)+r−1∑

k=2j(n+M+1)

1

k
+

2j+1(n+M+1)+r−1∑

k=2j+1(n+M+1)

1

k

⎫
⎬

⎭ .

Elementary calculations give

∣∣∣∣τ
(6)
n (x)

∣∣∣∣ <
ε(M + 1)

1
p

r

∞∑

j=0

{
C

(2j(n + M + 1))
1
p

sup
m≥b(2j(n+M+1))

(
m1− 1

q m−1m
1
q

)
+ r

(
2j(n + M + 1)

)− 1
p +

1
2
r
(
2j(n + M + 1)

)− 1
p

}

≤ ε(M + 1)
1
p

r

∞∑

j=0

{(
2j(n + M + 1)

)− 1
p

(
C +

3
2
r

)}

≤ ε(M + 1)
1
p
(
C + 3

2r
)

r ((n + M + 1))
1
p

∞∑

j=0

(
1

2
1
p

)j

≤ ε
(
C + 3

2r
)

r

1

1 − 2− 1
p

.

Joining the obtained estimates the uniform convergence of series (1.2)
follows and thus the proof is complete. �

4.2. Proof of Proposition 1

Let for n ∈ N:

an =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

3
n ln(n+1) , when n = 1 (mod 3),

1
n ln(n+1) , when n = 2 (mod 3),

1
n ln(n+1) , when n = 0 (mod 3) and n �= 0 (mod 6),

1
(n−3) ln(n−2) + 1

n
1+ 1

p ln(n+1)
, when n = 0 (mod 6).

First, we prove that (an) ∈ GM(p, 3β(1), 3) for p > 1. Let

An = {k ∈ N : n ≤ k ≤ 2n − 1 and k = 1 (mod 3)},

Bn = {k ∈ N : n ≤ k ≤ 2n − 1 and k = 2 (mod 3)},

Cn = {k ∈ N : n ≤ k ≤ 2n − 1 and k = 0 (mod 3) and k �= 0 (mod 6)},

Dn = {k ∈ N : n ≤ k ≤ 2n − 1 and k = 0 (mod 6)}.
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Using elementary calculations we get
{

2n−1∑

k=n

|ak − ak+3|p
} 1

p

=

⎧
⎨

⎩
∑

k∈An

|ak − ak+3|p +
∑

k∈Bn

|ak − ak+3|p

+
∑

k∈Cn

|ak − ak+3|p +
∑

k∈Dn

|ak − ak+3|p
⎫
⎬

⎭

1
p

=

⎧
⎨

⎩
∑

k∈An

∣∣∣∣
3

k ln(k + 1)

− 3

(k + 3) ln(k + 4)

∣∣∣∣
p

+
∑

k∈Bn

∣∣∣∣
1

k ln(k + 1)
− 1

(k + 3) ln(k + 4)

∣∣∣∣
p

+
∑

k∈Cn

∣∣∣∣∣
1

k ln(k + 1)
− 1

k ln(k + 1)
− 1

(k + 3)
1+ 1

p ln(k + 4)

∣∣∣∣∣

p

+
∑

k∈Dn

∣∣∣∣∣
1

(k − 3) ln(k − 2)
+

1

k
1+ 1

p ln(k + 1)
− 1

(k + 3) ln(k + 4)

∣∣∣∣∣

p
⎫
⎬

⎭

1
p

=

⎧
⎨

⎩
∑

k∈An

3p

∣∣∣∣
1

k ln(k + 1)
− 1

(k + 3) ln(k + 4)

∣∣∣∣
p

+
∑

k∈Bn

∣∣∣∣
1

k ln(k + 1)

− 1

(k + 3) ln(k + 4)

∣∣∣∣
p

+
∑

k∈Cn

∣∣∣∣∣
1

(k + 3)
1+ 1

p ln(k + 4)

∣∣∣∣∣

p

+
∑

k∈Dn

(∣∣∣∣∣
1

(k − 3) ln(k − 2)
− 1

(k + 3) ln(k + 4)
+

1

k
1+ 1

p ln(k + 1)

∣∣∣∣∣

)p
⎫
⎬

⎭

1
p

.

Moreover∣∣∣∣
1

k ln(k + 1)
− 1

(k + 3) ln(k + 4)

∣∣∣∣ =
|(k + 3) ln(k + 4) − k ln(k + 1)|

k(k + 3) ln(k + 1) ln(k + 4)

≤
3k

k+1 + 3 ln(k + 4)
k(k + 3) ln(k + 1) ln(k + 4)

≤ 6 ln(k + 4)
k2 ln(k + 1) ln(k + 4)

=
6

k2 ln(k + 1)
for k ≥ 1 and∣∣∣∣

1
(k − 3) ln(k − 2)

− 1
(k + 3) ln(k + 4)

∣∣∣∣ =
|(k + 3) ln(k + 4) − (k − 3) ln(k − 2)|

(k − 3)(k + 3) ln(k − 2) ln(k + 4)

≤ (k − 3) |ln(k + 4) − ln(k − 2)| + 6 ln(k + 4)
(k − 3)(k + 3) ln(k − 2) ln(k + 4)

≤
6(k−3)

k−2 + 6 ln(k + 4)
(k − 3)(k + 3) ln(k − 2) ln(k + 4)

≤ 12
(k − 3)(k + 3) ln(k − 2)

≤ 48
k2 ln(k + 1)
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for k ≥ 6. Thus

{ 2n−1∑

k=n

|ak − ak+3|p
} 1

p ≤
⎧
⎨

⎩
∑

k∈An

3p

(
6

k2 ln(k + 1)

)p

+
∑

k∈Bn

(
6

k2 ln(k + 1)

)p

+
∑

k∈Cn

(
1

k
1+ 1

p ln(k + 1)

)p

+
∑

k∈Dn

(
48

k2 ln(k + 1)
+

1

k
1+ 1

p ln(k + 1)

)p
⎫
⎬

⎭

1
p

≤ 49

{
2n−1∑

k=n

(
1

k
1+ 1

p ln(k + 1)

)p} 1
p

≤ 49
1

n
1+ 1

p ln(n + 1)
n

1
p

= 49
1

n ln(n + 1)
≤ 147

1

n

2n∑

k=n

|ak| ≤ 147
1

n
sup

m≥b(n)

2m∑

k=m

|ak| .

Hence (an) ∈ GM(p, 3β(1), 3). Now, we will show that (an) /∈ GM(1, 3β(1), 3).
We have

2n−1∑

k=n

|ak − ak+3| ≥
∑

k∈Cn

|ak − ak+3| =
∑

k∈Cn

∣∣∣∣
1

k ln(k + 1)
− 1

k ln(k + 1)

− 1

(k + 3)1+
1
p ln(k + 4)

∣∣∣∣∣ =
∑

k∈Cn

1

(k + 3)1+
1
p ln(k + 4)

≥ 1

(n + 3)1+
1
p ln(n + 4)

n

12
≥ 1

48(n + 3)
1
p ln(n + 4)

.

On the other hand, we get

1
n

sup
m≥b(n)

2m∑

k=m

|ak| ≤ C
1
n

.

Therefore, the inequality

2n∑

k=n

|ak − ak+3| ≤ C
1
n

sup
m≥b(n)

2m∑

k=m

|ak| .

can not be satisfied if n → ∞.
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Now, we will show that the series (1.2) is divergent in x0 = 2
3π. We have

6N+5∑

k=6

ak sin(kx0) =
N∑

k=1

5∑

l=0

a6k+l sin

(
(6k + l)

2

3
π

)
=

N∑

k=1

(a6k sin(4π)

+ a6k+1 sin

(
(6k + 1)

2

3
π

)
+ a6k+2 sin

(
(6k + 2)

2

3
π

)
+ a6k+3 sin

(
(6k + 3)

2

3
π

)

+a6k+4 sin

(
(6k + 4)

2

3
π

)
+ a6k+5 sin

(
(6k + 5)

2

3
π

))

=

N∑

k=1

(
a6k+1 sin

(
2

3
π

)
+ a6k+2

(
− sin

(
2

3
π

))
+ a6k+4 sin

(
2

3
π

)

+a6k+5

(
− sin

(
2

3
π

)))
= sin

(
2

3
π

) N∑

k=1

[(a6k+1 − a6k+2) + (a6k+4 − a6k+5)]

= sin

(
2

3
π

) N∑

k=1

[(
3

(6k + 1) ln(6k + 2)
− 1

(6k + 2) ln(6k + 3)

)

+

(
3

(6k + 4) ln(6k + 5)
− 1

(6k + 5) ln(6k + 6)

)]

≥ sin

(
2

3
π

) N∑

k=1

[(
3

(6k + 2) ln(6k + 2)
− 1

(6k + 2) ln(6k + 2)

)

+

(
3

(6k + 5) ln(6k + 5)
− 1

(6k + 5) ln(6k + 5)

)]

= sin

(
2

3
π

) N∑

k=1

(
2

(6k + 2) ln(6k + 2)
+

2

(6k + 5) ln(6k + 5)

)

≥ 4 sin

(
2

3
π

) N∑

k=1

1

(6k + 5) ln(6k + 5)
→ ∞ as N → ∞.

This ends our proof. �

4.3. Proof of Theorem 11

The proof is similar to the proof of Theorem 10. The only difference is that
we use (2.3) and (3.2) instead of (2.2) and (3.1), respectively. �

4.4. Proof of Theorem 12

The proof is similar to the proof of Theorem 10. The only difference is that
we use (2.4) and Lemma 2 instead of (3.1) and Lemma 1, respectively. �
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