Skip to main content
Log in

On the Fractional Schrödinger Equations with Critical Nonlinearity

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we study the existence and multiplicity results for the following critical fractional Schrödinger equation with magnetic field

$$\begin{aligned} \varepsilon ^{2 s}(-\Delta )_{{\mathcal {A}}/\varepsilon }^{s}q+{\mathcal {V}}(x)q -\lambda f(|q|)q-{\mathcal {K}}(x)|q|^{2_{s}^{*}-2} q=0,{} & {} \quad \text{ in } {\mathbb {R}}^{N}, \end{aligned}$$

where \(\varepsilon>0, \lambda >0, s \in (0,1), N \ge 3,\) \(2_{s}^{*}=\frac{2N}{N-2s},\) \({\mathcal {V}}: {\mathbb {R}}^{N} \rightarrow {\mathbb {R}} \text{ and } {\mathcal {A}}: {\mathbb {R}}^{N} \rightarrow {\mathbb {R}}^{N}\) are the electric and magnetic potentials respectively. The methods used here are based on the Nehari manifold method, Ekeland’s variational principle and the Ljusternick–Schnirelmann category theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility

The author have no conflicts of interest to declare that are relevant to the content of this article.

References

  1. Bahri, A.: Critical points at Infinity in Some Variational Problems Pitman, 1989. Research Notes in Mathematics Series, p. 182 (1988)

  2. Szulkin, A., Weth, T.: The method of Nehari manifold. In: Gao, D.Y., Motreanu, D. (eds.) Handbook of Nonconvex Analysis and Applications, pp. 597–632. International Press, Boston (2010)

    MATH  Google Scholar 

  3. Pinamonti, A., Squassina, M., Vecchi, E.: The Maz’ya–Shaposhnikova limit in the magnetic setting. J. Math. Anal. Appl. 449, 1152–1159 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  4. Pinamonti, A., Squassina, M., Vecchi, E.: Magnetic BV functions and the Bourgain–Brezis–Mironescu formula. Adv. Calc. Var. (2017). https://doi.org/10.1515/acv-2017-0019.2

    Article  MATH  Google Scholar 

  5. Zhang, B., Squassina, M., Zhang, X.: Fractional NLS equations with magnetic field, critical frequency and critical growth. Manuscr. Math. 155(1–2), 115–140 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Alves, C.O., Figueiredo, G.M., Furtado, M.F.: Multiple solutions for a nonlinear Schrödinger equation with magnetic fields. Commun. Partial Differ. Equ. 36(9), 1565–1586 (2011)

    Article  MATH  Google Scholar 

  7. Alves, C.O., Figueiredo, G.M., Furtado, M.F.: On the number of solutions of NLS equations with magnetics fields in expanding domains. J. Differ. Equ. 251(9), 2534–2548 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Palatucci, G., Pisante, A.: Improved Sobolev embeddings, profile decomposition, and concentration-compactness for fractional Sobolev spaces. Calc. Var. Partial Differ. Equ. 50, 799–829 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zu, G., Xianhua, T., Sitong, C.: Ground state solutions for a class of nonlinear fractional Schrödinger–Poisson systems with super-quadratic nonlinearity. Chaos Solitons Fractals (2017). https://doi.org/10.1016/j.chaos.2017.10.034

    Article  MATH  Google Scholar 

  10. Arioli, G., Szulkin, A.: A semilinear Schrödinger equation in the presence of a magnetic field. Arch. Ration. Mech. Anal. 170(4), 277–295 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chabrowski, J., Szulkin, A.: On the Schrödinger equation involving a critical Sobolev exponent and magnetic field. Topol. Methods Nonlinear Anal. 25(1), 3–21 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cardoso, J.A., dos Prazeres, D.S., Severo, U.B.: Fractional Schrödinger equations involving potential vanishing at infinity and supercritical exponents. Z. Angew. Math. Phys. 71, 129 (2020)

    Article  MATH  Google Scholar 

  13. Chao, J., Zhao, Y.: Existence of solutions for a class of Schrödinger equations in RN with magnetic field and vanishing potential. J. Elliptic Parabol. Equ. 5, 251–268 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  14. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I. Functional Analysis. Academic Press Inc., New York (1980)

    MATH  Google Scholar 

  15. Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)

    Book  MATH  Google Scholar 

  16. Squassina, M., Volzone, B.: Bourgain–Brezis–Mironescu formula for magnetic operators. C. R. Math. Acad. Sci. Paris 354, 825–831 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Esteban, M.J., Lions, P.L.: Stationary solutions of nonlinear Schrödinger equations with an external magnetic field. In: Partial Differential Equations and the Calculus of Variations, Vol. I, pp. 401–449, Progr. Nonlinear Differential Equations Appl, 1, Birkhäuser Boston, Boston (1989)

  18. Ghoussoub, N.: Duality and Perturbation Methods in Critical Point Theory. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  19. d’Avenia, P., Squassina, M.: Ground states for fractional magnetic operators. ESAIM: COCV 24(1), 1–24 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Lions, P.L.: The concentration compactness principle in the calculus of variations: the locally compact case, part 1. Ann. Inst. Henri Poincare C 1, pp. 109–145 (1984); The concentration compactness principle in the calculus of variations: the locally compact case, part 2. vol. 1, pp. 223–283 (1984)

  21. Rabinowitz, P.: On a class of nonlinear Schrödinger equations Z. Angew. Math. Phys. 43, 270–291 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Felmer, P., Quaas, A., Tan, J.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinb. Sect. A 142, 1237–1262 (2012)

    Article  MATH  Google Scholar 

  23. Peng, Q.Y., Ou, Z.-Q., Lv, Y.: Ground state solutions for the fractional Schrödinger–Poisson system with critical growth. Chaos Solitons Fractals (2021). https://doi.org/10.1016/j.chaos.2021.110650

    Article  MATH  Google Scholar 

  24. Secchi, S.: Ground state solutions for nonlinear fractional Schrödinger equations in R N. J. Math. Phys. 54, 031501 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Barile, S.: Multiple semiclassical states for singular magnetic nonlinear Schrödinger equations. Electron. J. Differ. Equ. 2008(37), 18 (2008)

    MathSciNet  MATH  Google Scholar 

  26. Barile, S.: A multiplicity result for singular NLS equations with magnetic potentials. Nonlinear Anal. 68(11), 3525–3540 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Cingolani, S.: Semiclassical stationary states of nonlinear Schrödinger equations with an external magnetic field. J. Differ. Equ. 188(1), 52–79 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Cingolani, S., Clapp, M.: Intertwining semiclassical bound states to a nonlinear magnetic Schrödinger equation. Nonlinearity 22(9), 2309–2331 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Cingolani, S., Jeanjean, L., Secchi, S.: Multi-peak solutions for magnetic NLS equations without non-degeneracy conditions. ESAIM Control Optim. Calc. Var. 15(3), 653–675 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ichinose, T., Tamura, H.: Imaginary-time path integral for a relativistic spinless particle in an electromagnetic field. Commun. Math. Phys. 105, 239–257 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  31. Ambrosio, V., d’Avenia, P.: Nonlinear fractional magnetic Schrödinger equation: existence and multiplicity. J. Differ. Equ. 264(5), 3336–3368 (2018)

    Article  MATH  Google Scholar 

  32. Ambrosio, V.: Concentrating solutions for a magnetic Schrödinger equation with critical growth. J. Math. Anal. Appl. 479(1), 1115–1137 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ambrosio, V.: Multiple solutions for singularly perturbed nonlinear magnetic Schrödinger equations. Asymp. Anal. (2021). https://doi.org/10.3233/ASY-211705

    Article  MATH  Google Scholar 

  34. Benci, V., Cerami, G.: Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology. Calc. Var. Partial Differ. Equ. 2, 29–48 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ambrosio, V.: On a fractional magnetic Schrödinger equation in \({\mathbb{R} }\) with exponential critical growth. Nonlinear Anal. 183, 117–148 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. Ambrosio, V.: Nonlinear Fractional Schrödinger Equations in \(\mathbb{R} ^N\). Springer (2021)

    Book  Google Scholar 

  37. Ambrosio, V., Radulescu, V.D.: Fractional double-phase patterns: concentration and multiplicity of solutions. J. Math. Pures Appl. 142, 101–145 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  38. Ambrosio, V.: Concentration phenomena for fractional magnetic NLS equations. Proc. R. Soc. Edinb. Sect. A Math. (2022). https://doi.org/10.1017/prm.2021

  39. He, X., Zou, W.: Existence and concentration result for the fractional Schrödinger equations with critical nonlinearities. Calc. Var. Partial Differ. Equ. 55, 91 (2016)

    Article  MATH  Google Scholar 

  40. Shang, X., Zhang, J.: Ground states for fractional Schrödinger equations with critical growth. Nonlinearity 27(2), 187–207 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Ding, Y., Liu, X.: Semiclassical solutions of Schrödinger equations with magnetic fields and critical nonlinearities. Manuscr. Math. 140(1–2), 51–82 (2013)

    Article  MATH  Google Scholar 

  42. Guo, Y.H., Sun, H.R., Cui, N.: Existence and multiplicity results for the fractional magnetic Schrödinger equations with critical growth. J. Math. Phys. 62(6), 061503 (2021)

    Article  MATH  Google Scholar 

  43. Shen, Z., Gao, F.: On the existence of solutions for the critical fractional Laplacian equation in RN. Abstr. Appl. Anal. 10, 143741 (2014)

    MATH  Google Scholar 

Download references

Acknowledgements

The author would like to express their sincere thanks to the referees for their valuable comments and suggestions.

Funding

No funding for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Khachnaoui.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khachnaoui, K. On the Fractional Schrödinger Equations with Critical Nonlinearity. Results Math 78, 68 (2023). https://doi.org/10.1007/s00025-023-01849-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-023-01849-y

Keywords

Mathematics Subject Classification

Navigation