Skip to main content
Log in

Existence and concentration result for the fractional Schrödinger equations with critical nonlinearities

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

In this paper we consider the nonlinear fractional Schrödinger equations in presence of a critical power nonlinearity and a subcritical term

$$\begin{aligned} \varepsilon ^{2s}(-\Delta )^s u+V(x)u=f(u)+u^{2^*_s-1}\quad x\in \mathbb R^N, \end{aligned}$$

where \(s\in (0,1), 2^*_s=2N/(N-2s), N>2s, (-\Delta )^s\) is the fractional laplacian and f(u) is of subcritical nonlinearity, and \(\varepsilon \) is a positive parameter. Under a local condition imposed on the potential V, we relate the number of positive solutions with the topology of the set where the potential attains its minimum. In the proofs we apply variational methods, penalization techniques and Ljusternik–Schnirelmann theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosetti, A., Rabinowitz, P.H.: Dual varitional methods in critical point theory and applications. J. Funct. Anal. 14, 349–381 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alves, C.O., Figueiredo, G.M.: Multiplicity of positive solutions for a quasilinear problem in \(\mathbb{R}^N\) via penalization method. Adv. Nonlinear Studies 5, 551–572 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Alves, C.O., Figueiredo, G.M., Furtado, M.: Multiple solutions for a nonlinear Schrödinger equation with magnetic fields. Commun. Partial Differ. Equ. 36, 1565–1586 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alves, C.O., Miyagaki, O.H.: Existence and concentration of solutions for a class of fractional elliptic equation in \(\mathbb{R}^N\) via penalization method (2015). arXiv:1508.03964vl [math.AP]

  5. Ambrosetti, A., Malchiodi, A.: Perturbation Methods and Semilinear Elliptic Problems on \(\mathbb{R}^N\). Birkhäuser, Basel (2006)

    MATH  Google Scholar 

  6. Benci, V., Cerami, G.: Multiple positive solutions of some elliptic problems via the Morse theory and the domain topology. Calc. Var. Partial Differ. Equ. 2, 29–48 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barris, B., Colorado, E., de Dablo, A., Sánchez, U.: On some critical problems for the fractional Laplacian. J. Differ. Equ. 252, 6133–6162 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Barris, B., Colorado, E., Servadei, R., Soria, F.: A critical fractional equation with concave–convex power nonlinearities. Ann. Inst. H. Poincaré Anal. Non Linéaire 32, 875–900 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brändle, C., Colorado, E., de Pablo, A., Sánchez, U.: A concave-convex elliptic problem involving the fractional Laplacian. Proc. R. Soc. Edinb. Sect. A. Math. 142, 39–71 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Brezis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36, 437–477 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cabré, X., Tan, J.: Positive solutions of nonlinear problems involving the square root of the Laplacian. Adv. Math. 224, 2052–2093 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equ. 32, 1245–1260 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chang, X., Wang, Z.Q.: Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity. Nonlinearity 26, 479–494 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chen, W., Li, C., Ou, B.: Classification of solutions for an integral equation. Commun. Pure Appl. Math. 59, 330–343 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chen, G.: Multiple semiclassical standing waves for fractional nonlinear Schrödinger equations. Nonlinearity 28, 927–949 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chen, G., Zheng, Y.: Concentration phenomena for fractional nonlinear Schrödinger equations. Commun. Pure Appl. Anal. 13, 2359–2376 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cotsiolis, A., Tavoularis, N.: Best constant for Sobolev inequalities for higher order fractional derivatives. J. Math. Anal. Appl. 295, 225–236 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  19. Davila, J., del Pino, M., Wei, J.: Concentrating standing waves for the fractional nonlinear Schrödinger equation. J. Differ. Equ. 256, 858–892 (2014)

    Article  MATH  Google Scholar 

  20. del Pino, M., Felmer, P.L.: Local mountain pass for semilinear elliptic problems in unbounded domains. Calc. Var. Partial Differ. Equ. 4, 121–137 (1996)

    Article  MATH  Google Scholar 

  21. Dipierro, S., Medina, M., Valdinoci, E.: Fractional elliptic problems with critical growth in the hole of \(\mathbb{R}^N\) (2015). arXiv:1506.01748vl [math.AP]

  22. do Ó, J.M., Miyagaki, O.H., Squassina, M.: Critical and subcritical fractional problems with vanishing potentials (2014). arXiv:1410.0843 [math.AP]

  23. Ekeland, I.: On the variational principle. J. Math. Anal. Appl. 47, 324–353 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  24. Fall, M.M., Mahmoudi, F., Valdinoci, E.: Ground states and concentration phenomena for the fractional Schrödinger equation. Nonlinearity 28, 1937–1961 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Felmer, P., Quaas, A., Tan, J.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinb. 142A, 1237–1262 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Figueiredo, G.M., Santos Junior, J.R.: Multiplicity and concentration behavior of positive solutions for a Schrödinger–Kirchhoff type problem via pennalization method. ESAIM: COCV 20, 389–415 (2014)

  27. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Equations of Second Order, Reprint of the 1998th edn. Classics in Mathematics, Springer, Berlin (2001)

  28. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hithiker’s guide to the frctional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  29. Jin, T., Li, Y.Y., Xiong, J.: On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions. J. Eur. Math. Soc. 16, 1111–1171 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, 056108–056114 (2002)

    Article  MathSciNet  Google Scholar 

  31. Laskin, N.: Fractional quantum mechanics and Levy path integrals. Phys. Lett. A 268, 298–305 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The limit case. I. Rev. Math. Iberoam. 1(1), 145–201 (1985)

  33. Lions, P.L.: The concentration-compactness principle in the calculus of variations. The limit case. II. Rev. Math. Iberoam. 1(2), 45–121 (1985)

  34. Moser, J.: A new proof of Giorgi’s theorem concerning the regularity problem for elliptic differential equations. Commun. Pure Appl. Math. 13, 457–468 (1960)

    Article  MATH  Google Scholar 

  35. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270–291 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  36. Seok, J.: Spike-layer solutions to nonlinear fractional Schrödinger equations with almost optimal nonlinearities. Electron. J. Differ. Equ. 2015(196), 1–19 (2015)

    MathSciNet  MATH  Google Scholar 

  37. Shang, X., Zhang, J.: On fractional Schrödinger equation in \(\mathbb{R}^N\) with critical growth. J. Math. Phys. 54, 121502 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Secchi, S.: Ground state solutions for nonlinear fractional Schrödinger equations in \(\mathbb{R}^N\). J. Math. Phys. 54, 031501 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  39. Servadei, R., Valdinoci, E.: A Brezis-Nirenberg result for non-local critical equations in lower dimension. Commun. Pure Appl. Anal. 12, 2445–2464 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60, 67–112 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Seira, J., Ros-Oton, X.: The Dirichlet problem for the fractional Laplacian: regularity up to the boundary. J. Math. Pures Appl. 101, 275–302 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Szulkin, A., Weth, T.: The method of Nehari manifold. In: Gao, D.Y., Montreanu, D. (eds.) Handbook of Nonconvex Analysis and Applications, pp. 2314–2351. Inernational Press, Boston (2010)

    Google Scholar 

  43. Tan, J.: The Brezis–Nirenberg type problem involving the square root of the Laplacian. Calc. Var. Partial Differ. Equ. 36, 21–41 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  44. Willem, M.: Minimax Theorems. Birckhäuser, Boston (1996)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere gratitude to the referee for careful reading the manuscript and valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoming He.

Additional information

Communicated by P. Rabinowitz.

X. He is supported by NSFC (11371212, 10601063, 11271386) while W. Zou by NSFC (11371212, 11271386).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Zou, W. Existence and concentration result for the fractional Schrödinger equations with critical nonlinearities. Calc. Var. 55, 91 (2016). https://doi.org/10.1007/s00526-016-1045-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-016-1045-0

Mathematics Subject Classification

Navigation