Skip to main content
Log in

Triharmonic CMC Hypersurfaces in Space Forms with at Most 3 Distinct Principal Curvatures

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

A k-harmonic map is a critical point of the k-energy defined on the space of smooth maps between two Riemannian manifolds. In this paper, we prove that if \(M^{n} (n\ge 3)\) is a CMC proper triharmonic hypersurface with at most three distinct principal curvatures in a space form \(\mathbb {R}^{n+1}(c)\), then M has constant scalar curvature. This supports the generalized Chen’s conjecture when \(c\le 0\). When \(c=1\), we give an optimal upper bound of the mean curvature H for a non-totally umbilical proper CMC k-harmonic hypersurface with constant scalar curvature in a sphere. As an application, we give the complete classification of the 3-dimensional complete proper CMC triharmonic hypersurfaces in \(\mathbb {S}^{4}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availibility

This article has no associated data.

References

  1. Alencar, H., do Carmo, M.: Hypersurfaces with constant mean curvature in spheres. Proc. Amer. Math. Soc. 120(4), 1223–1229 (1994)

    Article  MathSciNet  Google Scholar 

  2. Aronszajn, N., Creese, T.M., Lipkin, L.J.: Polyharmonic functions. Oxford Mathematical Monographs., The Clarendon Press, Oxford University Press, New York (1983)

    MATH  Google Scholar 

  3. Baird, P., Fardoun, A., Ouakkas, S.: Liouville-type theorems for biharmonic maps between Riemannian manifolds. Adv. Calc. Var. 3(1), 49–68 (2010)

    Article  MathSciNet  Google Scholar 

  4. Baird, P., Gudmundsson, S.: \(p\)-harmonic maps and minimal submanifolds. Math. Ann. 294(4), 611–624 (1992)

    Article  MathSciNet  Google Scholar 

  5. Balmuş, A., Montaldo, S., Oniciuc, C.: Biharmonic hypersurfaces in 4-dimensional space forms. Math. Nachr. 283(12), 1696–1705 (2010)

    Article  MathSciNet  Google Scholar 

  6. Balmuş, A., Oniciuc, C.: Biharmonic submanifolds with parallel mean curvature vector field in spheres. J. Math. Anal. Appl. 386(2), 619–630 (2012)

    Article  MathSciNet  Google Scholar 

  7. Besse, A.L.: Einstein manifolds. Classics in Mathematics., Springer-Verlag, Berlin (2008). (Reprint of the 1987 edition)

  8. Bibi, H., Loubeau, E., Oniciuc, C.: Unique continuation property for biharmonic hypersurfaces in spheres. Ann. Global Anal. Geom. 60(4), 807–827 (2021)

    Article  MathSciNet  Google Scholar 

  9. Burel, J.-M., Loubeau, E.: \(p\)-harmonic morphisms: the \(1<p<2\) case and some non-trivial examples. In Differential geometry and integrable systems (Tokyo, 2000), volume 308 of Contemp. Math., pages 21–37. Amer. Math. Soc., Providence, RI, (2002)

  10. Cartan, E.: Familles de surfaces isoparamétriques dans les espaces à courbure constante. Ann. Mat. Pura Appl. 17(1), 177–191 (1938)

    Article  MathSciNet  Google Scholar 

  11. Chang, S.: A closed hypersurface with constant scalar and mean curvatures in \(S^4\) is isoparametric. Comm. Anal. Geom. 1(1), 71–100 (1993)

    Article  MathSciNet  Google Scholar 

  12. Chang, S.: On closed hypersurfaces of constant scalar curvatures and mean curvatures in \(S^{n+1}\). Pacific J. Math. 165(1), 67–76 (1994)

    Article  MathSciNet  Google Scholar 

  13. Chen, B.-Y.: Some open problems and conjectures on submanifolds of finite type. Soochow J. Math. 17(2), 169–188 (1991)

    MathSciNet  MATH  Google Scholar 

  14. Cheng, Q.-M., Wan, Q.-R.: Hypersurfaces of space forms \(M^4(c)\) with constant mean curvature. In Geometry and global analysis (Sendai, 1993), pages 437–442. Tohoku Univ., Sendai, (1993)

  15. Eells, J., Jr., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. Amer. J. Math. 86, 109–160 (1964)

    Article  MathSciNet  Google Scholar 

  16. Fetcu, D., Oniciuc, C.: Biharmonic and biconservative hypersurfaces in space forms. In Differential geometry and global analysis–in honor of Tadashi Nagano, volume 777 of Contemp. Math., pages 65–90. Amer. Math. Soc., Providence, RI, (2022)

  17. Fu, Y., Hong, M.-C., Zhan, X.: On Chen’s biharmonic conjecture for hypersurfaces in \({\mathbb{R}}^5\). Adv. Math. 383, 107697 (2021)

    Article  Google Scholar 

  18. Guan, Z., Li, H., Vrancken, L.: Four dimensional biharmonic hypersurfaces in nonzero space forms have constant mean curvature. J. Geom. Phys. 160, 103984 (2021). (15)

    Article  MathSciNet  Google Scholar 

  19. Jiang, G.Y.: \(2\)-harmonic maps and their first and second variational formulas. Chinese Ann. Math. Ser. A 7(4), 389–402 (1986)

    MathSciNet  MATH  Google Scholar 

  20. Maeta, S.: \(k\)-harmonic maps into a Riemannian manifold with constant sectional curvature. Proc. Amer. Math. Soc. 140(5), 1835–1847 (2012)

    Article  MathSciNet  Google Scholar 

  21. Maeta, S.: The second variational formula of the \(k\)-energy and \(k\)-harmonic curves. Osaka J. Math. 49(4), 1035–1063 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Maeta, S.: Construction of triharmonic maps. Houston J. Math. 41(2), 433–444 (2015)

    MathSciNet  MATH  Google Scholar 

  23. Maeta, S.: Polyharmonic maps of order \(k\) with finite \(L^p\) k-energy into Euclidean spaces. Proc. Amer. Math. Soc. 143(5), 2227–2234 (2015)

    Article  MathSciNet  Google Scholar 

  24. Maeta, S., Nakauchi, N., Urakawa, H.: Triharmonic isometric immersions into a manifold of non-positively constant curvature. Monatsh. Math. 177(4), 551–567 (2015)

    Article  MathSciNet  Google Scholar 

  25. Montaldo, S., Oniciuc, C., Ratto, A.: Polyharmonic hypersurfaces into space forms. Isr. J. Math. (2022). https://doi.org/10.1007/s11856-022-2315-5

  26. Montaldo, S., Ratto, A.: New examples of \(r\)-harmonic immersions into the sphere. J. Math. Anal. Appl. 458(1), 849–859 (2018)

    Article  MathSciNet  Google Scholar 

  27. Montaldo, S., Ratto, A.: Proper \(r\)-harmonic submanifolds into ellipsoids and rotation hypersurfaces. Nonlinear Anal. 172, 59–72 (2018)

    Article  MathSciNet  Google Scholar 

  28. Nakauchi, N., Urakawa, H.: Biharmonic hypersurfaces in a Riemannian manifold with non-positive Ricci curvature. Ann. Global Anal. Geom. 40(2), 125–131 (2011)

    Article  MathSciNet  Google Scholar 

  29. Nakauchi, N., Urakawa, H.: Biharmonic submanifolds in a Riemannian manifold with non-positive curvature. Results Math. 63(1–2), 467–474 (2013)

    Article  MathSciNet  Google Scholar 

  30. Nakauchi, N., Urakawa, H.: Polyharmonic maps into the Euclidean space. Note Mat. 38(1), 89–100 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Nakauchi, N., Urakawa, H., Gudmundsson, S.: Biharmonic maps into a Riemannian manifold of non-positive curvature. Geom. Dedicata 169, 263–272 (2014)

    Article  MathSciNet  Google Scholar 

  32. Nomizu, K.: Characteristic roots and vectors of a differentiable family of symmetric matrices. Linear and Multilinear Algebra 1(2), 159–162 (1973)

    Article  MathSciNet  Google Scholar 

  33. Oniciuc, C.: Biharmonic submanifolds in space forms. Habilitation thesis (2012). https://doi.org/10.13140/2.1.4980.5605

    Article  MATH  Google Scholar 

  34. Ou, Y.-L.: \(p\)-harmonic morphisms, biharmonic morphisms, and nonharmonic biharmonic maps. J. Geom. Phys. 56(3), 358–374 (2006)

    Article  MathSciNet  Google Scholar 

  35. Ou, Y.-L., Chen, B.-Y.: Biharmonic submanifolds and biharmonic maps in Riemannian geometry. World Scientific Publishing, Singapore (2020)

    Book  Google Scholar 

  36. Wang, S.B.: The first variation formula for \(k\)-harmonic mapping. Journal of Nanchang University, 13(1), (1989)

  37. Wang, S.B.: Some results on stability of \(3\)-harmonic mappings. Chinese Ann. Math. Ser. A 12(4), 459–467 (1991)

    MathSciNet  MATH  Google Scholar 

  38. Wang, X., Wu, L.: Proper biharmonic submanifolds in a sphere. Acta Math. Sin. (Engl. Ser.) 28(1), 205–218 (2012)

    Article  MathSciNet  Google Scholar 

  39. Xu, H.W.: A rigidity theorem for submanifolds with parallel mean curvature in a sphere. Arch. Math. (Basel) 61(5), 489–496 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Haizhong Li for bringing the question to our attention and his valuable suggestions and comments. We are also grateful to Professor C. Oniciuc for giving helpful comments on the first version of the paper and bringing some references to our attention, which help us to add Corollary 1.9 and improve Theorem 1.10. We also thank the anonymous referee for the careful reading and pointing out the issues.

Funding

The first author was partially supported by Natural Science Foundation of Shaanxi Province Grant No. 2020JQ-101 and the Fundamental Research Funds for the Central Universities Grant No. 310201911cx013. The second author was partially supported by NSFC Grant No. 11831005 and No. 11671224.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang Chen.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Guan, Z. Triharmonic CMC Hypersurfaces in Space Forms with at Most 3 Distinct Principal Curvatures. Results Math 77, 155 (2022). https://doi.org/10.1007/s00025-022-01698-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-022-01698-1

Keywords

Mathematics Subject Classification

Navigation