Skip to main content
Log in

Triharmonic isometric immersions into a manifold of non-positively constant curvature

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

A triharmonic map is a critical point of the 3-energy in the space of smooth maps between two Riemannian manifolds. We study the generalized Chen’s conjecture for a triharmonic isometric immersion \(\varphi \) into a space form of non-positive constant curvature. We show that if the domain is complete and both the 4-energy of \(\varphi \), and the \(L^4\)-norm of the tension field \(\tau (\varphi )\), are finite, then such an immersion \(\varphi \) is minimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baird, P., Eells, J.: A conservation law for harmonic maps. Lect. Notes Math. Springer, vol. 894, pp. 1–25 (1981)

  2. Baird, P., Fardoun, A., Ouakkas, S.: Liouville-type theorems for biharmonic maps between Riemannian manifolds. Adv. Calc. Var. 3, 49–68 (2010)

    Article  MathSciNet  Google Scholar 

  3. Baird, P., Wood, J.: Harmonic morphisms between riemannian manifolds. Oxford Science Publication, Oxford (2003)

  4. Caddeo, R., Montaldo, S., Piu, P.: On biharmonic maps. Contemp. Math. 288, 286–290 (2001)

    Article  MathSciNet  Google Scholar 

  5. Chen, B.Y.: Some open problems and conjectures on submanifolds of finite type. Soochow J. Math. 17, 169–188 (1991)

    MathSciNet  Google Scholar 

  6. Eells, J., Lemaire, L.: A report on harmonic maps. Bull. London Math. Soc. 10, 1–68 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Eells, J., Lemaire, L.: Selected topics in harmonic maps, CBMS. Am. Math. Soc. 50(1983)

  8. Eells, J., Lemaire, L.: Another report on harmonic maps. Bull. London Math. Soc. 20, 385–524 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eells, J., Sampson, J.H.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86, 109–160 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gaffney, M.P.: A special Stokes’ theorem for complete Riemannian manifold. Ann. Math. 60, 140–145 (1954)

    Article  MathSciNet  Google Scholar 

  11. Gudmundsson, S.: The bibliography of harmonic morphisms. http://matematik.lu.se/matematiklu/personal/sigma/harmonic/bibliography.html

  12. Ichiyama, T., Inoguchi, J., Urakawa, H.: Biharmonic maps and bi-Yang-Mills fields. Note di Matematica 28, 233–275 (2009)

    MathSciNet  MATH  Google Scholar 

  13. Ichiyama, T., Inoguchi, J., Urakawa, H.: Classifications and isolation phenomena of biharmonic maps and bi-Yang-Mills fields. Note di Matematica 30, 15–48 (2010)

    MathSciNet  Google Scholar 

  14. Ishihara, S., Ishikawa, S.: Notes on relatively harmonic immersions. Hokkaido Math. J. 4, 234–246 (1975)

    Article  MathSciNet  Google Scholar 

  15. Jiang, G.Y.: 2-Harmonic maps and their first and second variational formula. Chin. Ann. Math. 7A (1986), 388–402. Note di Matematica 28, pp. 209–232 (2009)

  16. Kasue, A.: Riemannian geometry, in Japanese. Baihu-kan, Tokyo (2001)

    Google Scholar 

  17. Lamm, T.: Biharmonic map heat flow into manifolds of nonpositive curvature. Calc. Var. 22, 421–445 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. Loubeau, E., Oniciuc, C.: The index of biharmonic maps in spheres. Compos. Math. 141, 729–745 (2005)

    Article  MathSciNet  Google Scholar 

  19. Loubeau, E., Oniciuc, C.: On the biharmonic and harmonic indices of the Hopf map. Trans. Am. Math. Soc. 359, 5239–5256 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Loubeau, E., Ou, Y.-L.: Biharmonic maps and morphisms from conformal mappings. Tohoku Math. J. 62, 55–73 (2010)

    Article  MathSciNet  Google Scholar 

  21. Montaldo, S., Oniciuc, C.: A short survey on biharmonic maps between Riemannian manifolds. Rev. Un. Mat. Argentina 47, 1–22 (2006)

    MathSciNet  Google Scholar 

  22. Maeta, S.: k-Harmonic maps into a Riemannian manifold with constant sectional curvature. Proc. Am. Math. Soc. 140, 1835–1847 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Maeta, S.: Polyharmonic maps of order k with finite \(L^p\) k-energy into Euclidean spaces. Proc. Am. Math. Soc. (to appear)

  24. Nakauchi, N., Urakawa, H.: Biharmonic hypersurfaces in a Riemannian manifold with non-positive Ricci curvature. Ann. Global Anal. Geom. 40, 125–131 (2011)

    Article  MathSciNet  Google Scholar 

  25. Nakauchi, N., Urakawa, H.: Biharmonic submanifolds in a Riemannian manifold with non-positive curvature. Results Math. 63, 467–474 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nakauchi, N., Urakawa, H., Gudmundsson, S.: Biharmonic maps into a Riemannian manifold of non-positive curvature. Geom. Dedicata 169, 263–272 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  27. Nakauchi, N., Urakawa, H.: Polyharmonic maps into the Euclidean space. arXiv: 1307.5089v2

  28. Oniciuc, C.: On the second variational formula for biharmonic maps to a sphere. Publ. Math. Debrecen. 67, 285–303 (2005)

    MathSciNet  Google Scholar 

  29. Ye-Lin, Ou, Tang, Liang: On the generalized Chen’s conjecture on biharmonic submanifolds. Michigan Math. J. 61, 531–542 (2012)

    Article  MathSciNet  Google Scholar 

  30. Sasahara, T.: Legendre surfaces in Sasakian space forms whose mean curvature vectors are eigenvectors. Publ. Math. Debrecen 67, 285–303 (2005)

    MathSciNet  Google Scholar 

  31. Schoen, R., Yau, S.T.: Harmonic maps and the topology of stable hypersurfaces and manifolds with non-negative Ricci curvature. Comment. Math. Helv. 51, 333–341 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  32. Yau, S.T.: Some function-theoretic properties of complete Riemannian manifold and their applications to geometry. Indiana Univ. Math. J. 25, 659–670 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  33. Wang, Z-P., Ou, Y-L.: Biharmonic Riemannian submersions from 3-manifolds. Math. Z. 269, pp. 917–925, (2011), arXiv: 1002.4439v1

  34. Wang, S.B.: The first variation formula for k-harmonic mapping. J. Nanchang Univ. 13(1), 24–37 (1989)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun Maeta.

Additional information

Communicated by A. Cap.

S. Maeta supported by the Grant-in-Aid for Research Activity Start-up, Japan Society for the Promotion of Science, No. 25887044.

N. Nakauchi supported by the Grant-in-Aid for the Scientific Research (C), Japan Society for the Promotion of Science, No 24540213.

H. Urakawa supported by the Grant-in-Aid for the Scientific Research (C), Japan Society for the Promotion of Science, No 25400154.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maeta, S., Nakauchi, N. & Urakawa, H. Triharmonic isometric immersions into a manifold of non-positively constant curvature. Monatsh Math 177, 551–567 (2015). https://doi.org/10.1007/s00605-014-0713-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-014-0713-4

Keywords

Mathematics Subject Classification

Navigation