1 Introduction and Statements of the Main Results

Let \({\mathbb {N}}\) be the set of positive integers and \({\mathbb {N}}_0={\mathbb {N}}\cup \{0\}\). As usual, C[0, 1] denotes the space of all real continuous functions defined on [0, 1], and \(C^m[0,1]\), \(m\in {\mathbb {N}}_0\), denotes the subspace of all m-times continuously differentiable functions, with the obvious understanding that \(C^0[0,1]=C[0,1]\). For \(m\in {\mathbb {N}}\), we denote by \({\mathscr {C}}^m[0,1]\supset C^m[0,1]\) the set of functions \(f\in C^{m-1}[0,1]\) such that \(f^{(m-1)}\) is absolutely continuous, i. e.,

$$\begin{aligned} f^{(m-1)}(y)-f^{(m-1)}(x)=\int _x^yg(u)du,\quad x,y \in [0,1], \end{aligned}$$

for some bounded measurable function g, which can be denoted by \(g=f^{(m)}\).

The indicator function of a set A is denoted by \(1_A\), and \({\mathbb {E}}\) stands for mathematical expectation.

Let \(f\in C[0,1]\). The sup-norm of f is simply denoted by \(\Vert f\Vert \), although, more generally, we use the notation \(\Vert f\Vert _A=\sup \{|f(x)|:x\in A\}\), \(A\subseteq [0,1]\).

The second order central difference of f is defined by

$$\begin{aligned} \Delta _h^2f(x)=f(x+h)-2f(x)+f(x-h),\quad h\ge 0, \end{aligned}$$

whenever \(x\pm h\in [0,1]\). The Ditzian–Totik modulus of smoothness of f with weight function \(\varphi (x)=\sqrt{x(1-x)}\) is defined by

$$\begin{aligned} \omega ^{\varphi }_2(f;\delta )=\sup \left\{ \left| \Delta _{h\varphi (x)}^2f(x)\right| :\ 0\le h\le \delta ,\ x\pm h\varphi (x)\in [0,1]\right\} ,\quad \delta \ge 0. \end{aligned}$$

The classical first order modulus of continuity is simply denoted by \(\omega (f;\delta )\).

In this paper, we will make use of the following important inequality proved by Bustamante [2]:

$$\begin{aligned} \omega _2^{\varphi }(f;\lambda \delta )\le (2+3\lambda ^2)\omega _2^{\varphi }(f;\delta ),\qquad \lambda , \delta \ge 0,\quad \lambda \delta \in [0,1). \end{aligned}$$
(1)

Finally, the nth Bernstein polynomial of f is defined as

$$\begin{aligned} B_nf(x)=\sum _{k=0}^nf\left( \frac{k}{n}\right) p_{n,k}(x),\quad p_{n,k}(x)={n\atopwithdelims ()k}x^k(1-x)^{n-k},\quad k=0,1,\ldots ,n. \end{aligned}$$

We have the probabilistic representation

$$\begin{aligned} B_nf(x)={\mathbb {E}}f\left( \frac{S_n(x)}{n}\right) , \end{aligned}$$
(2)

where \(S_n(x)\) is a random variable having the binomial law with parameters n and x, that is to say,

$$\begin{aligned} P(S_n(x)=k)=p_{n,k}(x),\quad k=0,1,\ldots ,n. \end{aligned}$$
(3)

Throughout this paper, whenever we write f, n, x, and y, we are assuming that \(f\in C[0,1]\), \(n\in {\mathbb {N}}\), and \(x,y\in [0,1]\).

Following the works by Ditzian and Ivanov [4] and Totik [9], the rates of uniform convergence for the Bernstein polynomials are characterized by

$$\begin{aligned} K_1\omega _2^{\varphi }\left( f;\frac{1}{\sqrt{n}}\right) \le \Vert B_nf-f\Vert \le K_2\omega _2^{\varphi }\left( f;\frac{1}{\sqrt{n}}\right) , \end{aligned}$$
(4)

for some absolute constants \(K_1\) and \(K_2\). Whereas no specific values for \(K_1\) have been provided yet, different authors completed statement (4) by showing specific values for the constant \(K_2\). In this regard, Adell and Sangüesa [1] gave \(K_2=4\), Gavrea et al. [5] and Bustamante [2] provided \(K_2=3\), and finally, Păltănea [7] proved the validity of \(K_2=2.5\), this being the best result up to date and up to our knowledge.

This notwithstanding, if additional smoothness conditions on f are added, then the second inequality in (4) may be valid for values of \(K_2\) smaller than 2.5. In this respect, Bustamante and Quesada [3] and Păltănea [8] obtained the following asymptotic result

$$\begin{aligned} \lim _{n\rightarrow \infty }\frac{\Vert B_nf-f\Vert }{\omega _2^{\varphi }\left( f;1/\sqrt{n}\right) }=\frac{1}{2},\quad f\in C^2[0,1], \end{aligned}$$
(5)

provided that f is not an affine function.

The contribution of this paper is twofold. In first place, we strength statement (5) by giving a non-asymptotic version of it. In fact, we prove the following result.

Theorem 1

If \(f\in C^2[0,1]\), then

$$\begin{aligned} \left| \Vert B_nf-f\Vert -\frac{1}{2}\omega _2^{\varphi }\left( f;\frac{1}{\sqrt{n}}\right) \right| \le \frac{1}{4n}\left( \omega \left( f'';\frac{1}{3\sqrt{n}}\right) +\frac{1}{4}\omega _2^{\varphi }\left( f'';\frac{1}{\sqrt{n}}\right) \right) .\nonumber \\ \end{aligned}$$
(6)

As a consequence, statement (5) holds true.

In second place, we complete statement (4) in the following asymptotic form.

Theorem 2

Let \((\tau _n)_{n\ge 1}\) be a sequence of positive real numbers such that

$$\begin{aligned} \tau _n\longrightarrow \infty ,\quad \frac{\tau _n}{n}\longrightarrow 0,\qquad n\rightarrow \infty . \end{aligned}$$

If \(f\in C[0,1]\) is not an affine function, then

$$\begin{aligned} \limsup _{n\rightarrow \infty }\frac{1}{\omega _2^{\varphi }\left( f;\frac{1}{\sqrt{n}}\right) }\Vert B_nf-f\Vert _{[\tau _n/n,1-\tau _n/n]}\le \frac{3}{2}. \end{aligned}$$
(7)

Moreover, we have in (4),

$$\begin{aligned} K_2\ge 1. \end{aligned}$$
(8)

This result is based upon Theorem 3 in Sect. 3, which gives estimates of the form

$$\begin{aligned} |B_nf(x)-f(x)|\le K_2(n,x)\omega _2^{\varphi }\left( f;\frac{1}{\sqrt{n}}\right) , \end{aligned}$$

for some explicit constants \(K_2(n,x)\) depending on n and x.

The paper is organized as follows. The proof of Theorem 1 is given in Sect. 2. We show Theorem 2 in Sect. 3 with the aid of two kinds of auxiliary results. On the one hand, we define certain smooth approximants \(Q_h^af\) of the function \(f\in C[0,1]\), by antisymmetrizing in an appropriate way the classical Steklov means of f. On the other hand, we estimate the tail probabilities and the truncated variance of the random variable \(S_n(x)\) appearing in the probabilistic representation of \(B_nf\) given in (2).

2 Proof of Theorem 1

2.1 Preliminaries

The Taylor’s formula of order \(m\in {\mathbb {N}}\) for \(f\in {\mathscr {C}}^m[0,1]\), with remainder in integral form can be written as

$$\begin{aligned}&f(y)-\sum _{j=0}^{m-1}\frac{f^{(j)}(x)}{j!}(y-x)^j\nonumber \\&\quad =\frac{(y-x)^m}{(m-1)!}\int _0^1(1-\theta )^{m-1}f^{(m)}(x+(y-x)\theta )d\theta \nonumber \\&\quad =\frac{(y-x)^m}{m!}{\mathbb {E}}f^{(m)}(x+(y-x)\beta _m), \end{aligned}$$
(9)

where \(\beta _m\) is a random variable with the beta density \(\rho _m(\theta )=m(1-\theta )^{m-1}\), \(0\le \theta \le 1\).

Lemma 1

If \(f\in C^2[0,1]\) and \(\delta \ge 0\), then

$$\begin{aligned} \left| \omega _2^{\varphi }(f;\delta )-\delta ^2\left\| \varphi ^2 f''\right\| \right| \le \frac{\delta ^2}{8}\omega _2^{\varphi }\left( f'';\delta \right) . \end{aligned}$$

Proof

Let \(h\ge 0\) with \(x\pm h\in [0,1]\). Using (9) with \(m=2\), we get

$$\begin{aligned} f(x-h)= & {} f(x)-f'(x)h+\frac{f''(x)}{2}h^2\\&+\frac{h^2}{2}{\mathbb {E}}\left( f''(x-h\beta _2)-f''(x)\right) , \end{aligned}$$

as well as

$$\begin{aligned} f(x+h)= & {} f(x)+f'(x)h+\frac{f''(x)}{2}h^2\\&+\frac{h^2}{2}{\mathbb {E}}\left( f''(x+h\beta _2)-f''(x)\right) . \end{aligned}$$

Adding these two identities, we obtain

$$\begin{aligned} \Delta _h^2f(x)= & {} f''(x)h^2\nonumber \\&+\frac{h^2}{2}{\mathbb {E}}\left( f''(x+h\beta _2)-2f''(x)+f''(x-h\beta _2)\right) . \end{aligned}$$
(10)

Replacing in (10) h by \(h\varphi (x)\) and applying the reverse triangular inequality, we have

$$\begin{aligned}&\left| \omega _2^{\varphi }(f;\delta )-\delta ^2\left\| \varphi ^2 f''\right\| \right| \le \frac{\delta ^2}{2}\left\| \varphi ^2\right\| \omega _2^{\varphi }\left( f'';\delta \right) \\&\quad = \frac{\delta ^2}{8}\omega _2^{\varphi }(f'';\delta ), \end{aligned}$$

thus completing the proof. \(\square \)

Gonska et al. [6] showed that

$$\begin{aligned} \left\| B_nf-f-\frac{1}{2n}\varphi ^2f''\right\| \le \frac{1}{4n}\omega \left( f'';\frac{1}{3\sqrt{n}}\right) . \end{aligned}$$
(11)

2.2 Proof of Theorem 1

Statement (6) is an inmediate consequence of (11), Lemma 1 with \(\delta =1/\sqrt{n}\), and the reverse and direct triangular inequalities. On the other hand, we have from Lemma 1

$$\begin{aligned}&\omega _2^{\varphi }\left( f;\frac{1}{\sqrt{n}}\right) =\frac{1}{n}\left\| \varphi ^2f''\right\| +o\left( \frac{1}{n}\right) , \end{aligned}$$

since \(f\in C^2[0,1]\). Thus, statement (5) readily follows from (6), and completes the proof.

3 Proof of Theorem 2

3.1 Auxiliary Results

Let \(0<h\le 1/3\). We consider the Steklov means of f defined as

$$\begin{aligned}&P_hf(y)=\int _{-1}^1\int _{-1}^1f\left( y+\frac{h}{2}(v_1+v_2)\right) dv_1dv_2\\&=\int _{-1}^1f(y+hv)\rho (v)dv,\quad h\le y\le 1-h,\end{aligned}$$

where

$$\begin{aligned} \rho (v)= & {} (1+v)1_{[-1,0]}+(1-v)1_{(0,1]},\quad -1\le v\le 1. \end{aligned}$$

In probabilistic terms, the Steklov means of f can be written as follows. Let \(V_1\) and \(V_2\) be independent identically distributed random variables having the uniform distribution on \([-1,1]\) and set \(V=(V_1+V_2)/2\). Since \(\rho (v)\) is the probability density of V, we can write

$$\begin{aligned} P_hf(y)= & {} {\mathbb {E}}f(y+hV),\quad h\le y\le 1-h. \end{aligned}$$
(12)

Lemma 2

Let \(0<h\le 1/3\) and let \(P_hf(y)\) be as in (12). Then,

  1. (a)
    $$\begin{aligned} \left| P_hf(y)-f(y)\right| \le \frac{1}{2}\omega _2^{\varphi }\left( f;\frac{h}{\varphi (y)}\right) . \end{aligned}$$
  2. (b)
    $$\begin{aligned} \left| (P_hf)''(y)\right| \le \frac{1}{h^2}\omega _2^{\varphi }\left( f;\frac{h}{\varphi (y)}\right) . \end{aligned}$$

Proof

Since V takes values in \([-1,1]\) and is symmetric (i. e., V and \(-V\) have the same law), we see that

$$\begin{aligned} \left| P_hf(y)-f(y)\right| =\frac{1}{2}\left| {\mathbb {E}}(f(y+hV) +f(y-hV)-2f(y))\right| \le \frac{1}{2}\omega _2^{\varphi }\left( f;\frac{h}{\varphi (y)}\right) , \end{aligned}$$

thus showing (a). On the other hand, it can be checked that

$$\begin{aligned} P_hf(y)= & {} \frac{1}{h^2}\left( f_{(2)}(y+h)+f_{(2)}(y-h)-2f_{(2)}(y)\right) , \end{aligned}$$

where \(f_{(2)}\) is a second antiderivative of f. This readily implies part (b) and completes the proof. \(\square \)

We will make use of the approximant \(P_hf\), whose domain is the interval \([h,1-h]\), to define a further one whose domain is the whole interval [0, 1], keeping at the same time analogous properties to those given in Lemma 2. To this end, we assume that

$$\begin{aligned} n\ge 3,\qquad 0<a<\frac{\varphi (a/2)}{\sqrt{n}}+a\le 1. \end{aligned}$$
(13)

and take

$$\begin{aligned} h= & {} \frac{\varphi (ax)}{\sqrt{n}},\qquad \frac{1}{a(n+1)}\le x\le \frac{1}{2}. \end{aligned}$$
(14)

It turns out that

$$\begin{aligned} h\le \min (ax,1/3). \end{aligned}$$
(15)

Now, we define the approximant \(Q_h^af(y)\) by antisymmetrizing \(P_hf(y)\) around the axes \(y=ax\) and \(y=1-ax\) as follows

$$\begin{aligned} Q_h^af(y)=\left\{ \begin{array}{ll} 2P_hf(ax)-P_hf(2ax-y), &{}\quad y\in [0,ax); \\ P_hf(y), &{} \quad y\in [ax,1-ax]; \\ 2P_hf(1-ax)-P_hf(2(1-ax)-y), &{}\quad y\in (1-ax,1]. \end{array} \right. \end{aligned}$$
(16)

The fact that \(Q_h^af\) is well defined readily follows from (13) and (14). Also, note that \(Q_h^af\) is twice differentiable except at the points ax and \(1-ax\). In these two points, \(Q_h^af\) only has sided second derivatives. This implies that \(Q_h^af\in {\mathscr {C}}^2[0,1]\).

Lemma 3

Let \(R_a=[ax,1-ax]\). Under assumptions (13) and (14), we have

  1. (a)

    If \(y\in R_a\), then

    $$\begin{aligned} \left| Q_h^af(y)-f(y)\right| \le \frac{1}{2}\omega _2^{\varphi }\left( f;\frac{1}{\sqrt{n}}\right) ,\quad \left| (Q_h^af)''(y)\right| \le \frac{1}{h^2}\omega _2^{\varphi }\left( f;\frac{1}{\sqrt{n}}\right) . \end{aligned}$$
  2. (b)

    If \(y\notin R_a\), then

    $$\begin{aligned} \left| Q_h^af(y)-f(y)\right| \le \left( \frac{7}{2}+\frac{3\sqrt{anx}}{(1-a)^{3/2}}\right) \omega _2^{\varphi }\left( f;\frac{h}{\varphi (h)}\right) , \end{aligned}$$

    and

    $$\begin{aligned} \left| (Q_h^af)''(y)\right| \le \frac{1}{h^2}\omega _2^{\varphi }\left( f;\frac{h}{\varphi (h)}\right) . \end{aligned}$$

Proof

(a) If \(y\in R_a\), then

$$\begin{aligned} \frac{h}{\varphi (y)}= & {} \frac{\varphi (ax)}{\varphi (y)}\frac{1}{\sqrt{n}}\le \frac{1}{\sqrt{n}}. \end{aligned}$$
(17)

Thus, the first inequality in part (a) follows from Lemma 2(a) and definition (16), whereas the second one follows from Lemma 2(b).

(b) Suppose that \(y\in [0,ax)\). By (16), we can write

$$\begin{aligned} Q_h^af(y)-f(y)&=2\left( P_hf(ax)-f(ax)\right) \nonumber \\&\quad -\left( P_hf(2ax-y)-f(2ax-y)\right) \nonumber \\&\quad -\left( f(2ax-y)+f(y)-2f(ax)\right) . \end{aligned}$$
(18)

Since \(h\le ax\le 2ax-y\le 1-h\), we see that

$$\begin{aligned} \varphi (ax)\ge \varphi (h),\quad \varphi (2ax-y)\ge \varphi (h). \end{aligned}$$
(19)

We therefore have from Lemma 2(a)

$$\begin{aligned}&\left| Q_h^af(y)-f(y)\right| \le \frac{3}{2}\omega _2^{\varphi }\left( f;\frac{h}{\varphi (h)}\right) \nonumber \\&\quad +\omega _2^{\varphi }\left( f;\frac{ax}{\varphi (ax)}\right) . \end{aligned}$$
(20)

Applying (1) with \(\lambda =ax\varphi (h)/(h\varphi (ax))\) and \(\delta =h/\varphi (h)\), we obtain

$$\begin{aligned} \omega _2^{\varphi }\left( f;\frac{ax}{\varphi (ax)}\right)&\le \left( 2+\frac{3(ax)^2\varphi ^2(h)}{\varphi ^2(ax)h^2}\right) \omega _2^{\varphi }\left( f;\frac{h}{\varphi (h)}\right) \nonumber \\&\le \left( 2+\frac{3\sqrt{anx}}{(1-a)^{3/2}}\right) \omega _2^{\varphi }\left( f;\frac{h}{\varphi (h)}\right) , \end{aligned}$$
(21)

as follows from (14) and some simple computations. Hence, the first inequality follows from (20) and (21).

On the other hand, we have from (16), (19), and Lemma 2(b)

$$\begin{aligned} \left| (Q_h^af)''(y)\right|= & {} \left| (P_hf)''(2ax-y)\right| \le \frac{1}{h^2}\omega _2^{\varphi }\left( f;\frac{h}{\varphi (2ax-y)}\right) \\\le & {} \frac{1}{h^2}\omega _2^{\varphi }\left( f;\frac{h}{\varphi (h)}\right) . \end{aligned}$$

If \(y\in (1-ax,1]\), the proof es similar. \(\square \)

The following estimates concerning the random variable \(S_n(x)/n\) will be needed.

Lemma 4

In the setting of Lemma 3, denote by \(r=1-a\). Then,

  1. (a)
    $$\begin{aligned} P\left( \frac{S_n(x)}{n}\notin R_a\right) \le e^{-nxr^2/2}+3e^{-nxr^2/(2e)}=:\epsilon _n(x). \end{aligned}$$
  2. (b)
    $$\begin{aligned}&\frac{1}{h^2}{\mathbb {E}}\left( \frac{S_n(x)}{n}-x\right) ^2 1_{\left\{ \frac{S_n(x)}{n}\notin R_a\right\} } \\&\quad \le \frac{nx}{a(1-ax)}\left( e^{-nxr^2/2}+6e^{-(n-2)xr^2/(2e)}\right) =:\delta _n(x). \end{aligned}$$

Proof

(a) As follows from (3), we have

$$\begin{aligned} {\mathbb {E}}e^{\theta S_n(x)}=\left( 1+x(e^{\theta }-1)\right) ^n,\quad \theta \in {\mathbb {R}}. \end{aligned}$$
(22)

Let \(\theta \ge 0\). By (22) and Chebyshev’s inequality, we have

$$\begin{aligned}&P\left( S_n(x)<anx\right) =P\left( e^{-\theta S_n(x)}>e^{-\theta anx}\right) \le {\mathbb {E}}e^{-\theta S_n(x)+\theta anx}\nonumber \\&\quad =e^{-n\left( -\log \left( 1-x\left( 1-e^{-\theta }\right) \right) -\theta ax\right) }\le e^{-nx\left( \left( 1-e^{-\theta }\right) -a\theta \right) }\le e^{-nx\left( r\theta -\theta ^2/2\right) },\qquad \quad \end{aligned}$$
(23)

where we have used the inequalities

$$\begin{aligned} -\log (1-u)\ge u,\quad u\ge 0,\qquad 1-e^{-\theta }\ge \theta -\frac{\theta ^2}{2},\quad \theta \ge 0. \end{aligned}$$

Choosing \(\theta =r\) in (23) (the value minimizing the exponent), we get

$$\begin{aligned} P\left( S_n(x)<anx\right) \le e^{-nxr^2/2}. \end{aligned}$$
(24)

On the other hand, we claim that

$$\begin{aligned} P\left( S_n(x)>n(1-ax)\right) \le P\left( S_n(x)>n(1-ax)-1\right) \le 3e^{-nxr^2/(2e)}. \end{aligned}$$
(25)

Indeed, let \(0\le \theta \le 1\). Using the inequalities

$$\begin{aligned} \log (1+u)\le u,\quad u\ge 0,\qquad e^{\theta }-1\le \theta +\frac{e\theta ^2}{2},\quad 0\le \theta \le 1, \end{aligned}$$

we have, as in the proof of (24),

$$\begin{aligned}&P\left( S_n(x)>n(1-ax)-1\right) =P\left( e^{\theta S_n(x)}>e^{\theta n(1-ax)-\theta }\right) \nonumber \\&\quad \le {\mathbb {E}}e^{\theta S_n(x)-n\theta (1-ax)+\theta }\le 3{\mathbb {E}}e^{\theta S_n(x)-n\theta (1-ax)}\nonumber \\&\quad =3e^{n\left( \log \left( 1+x\left( e^{\theta }-1\right) \right) -\theta (1-ax)\right) } \le 3e^{n\left( x\theta +ex\theta ^2/2-\theta (1-ax)\right) }\nonumber \\&\quad =3e^{n\theta (2x-1)}e^{nx(e\theta ^2/2-r\theta )} \le 3e^{nx\left( e\theta ^2/2-r\theta \right) }, \end{aligned}$$
(26)

since \(x\le 1/2\). Thus, claim (25) follows by choosing \(\theta =r/e\) in (26). Hence, part (a) follows from (24) and (25).

(b) From (24), we see that

$$\begin{aligned}&{\mathbb {E}}\left( \frac{S_n(x)}{n}-x\right) ^2 1_{\{S_n(x)<anx\}}\nonumber \\&\quad \le x^2P\left( S_n(x)<anx \right) \le x^2e^{-nxr^2/2}. \end{aligned}$$
(27)

On the other hand, since \(1-ax\ge 1/2\), we have

$$\begin{aligned} \frac{k}{k-1}\le \frac{n/2}{n/2-1}=\frac{n}{n-2},\quad k>n(1-ax). \end{aligned}$$

We therefore have

$$\begin{aligned}&{\mathbb {E}}\left( \frac{S_n(x)}{n}-x\right) ^2 1_{\{S_n(x)>n(1-ax)\}}\le \frac{1}{n^2}{\mathbb {E}}S_n(x)^21_{\{S_n(x)>n(1-ax)\}} \nonumber \\&\quad =\frac{1}{n^2}\sum _{k>n(1-ax)}{n\atopwithdelims ()k}k^2x^k(1-x)^{n-k}\nonumber \\&\quad =\frac{n-1}{n}x^2\sum _{k>n(1-ax)}{n-2\atopwithdelims ()k-2}\frac{k}{k-1}x^{k-2}(1-x)^{n-k}\nonumber \\&\quad \le \frac{n-1}{n-2}x^2P\left( S_{n-2}(x)>n(1-ax)-2\right) \nonumber \\&\quad \le 2x^2P\left( S_{n-2}(x)>n(1-ax)-2\right) , \end{aligned}$$
(28)

since \(n\ge 3\). Observe that

$$\begin{aligned} n(1-ax)-2=(n-2)(1-ax)-2ax\ge (n-2)(1-ax)-1, \end{aligned}$$

as follows from assumptions (13) and (14). By (25), the right-hand side in (28) can be bounded above by

$$\begin{aligned} 2x^2P\left( S_{n-2}(x)>(n-2)(1-ax)-1\right) \le 6x^2e^{-(n-2)xr^2/(2e)}. \end{aligned}$$

This, together with (27) and (28), shows part (b) and completes the proof.

\(\square \)

We are in a position to give the following local estimate.

Theorem 3

In the setting of Lemma 4, we have

$$\begin{aligned} \left| B_nf(x)-f(x)\right| \le \left( 1+\frac{1}{2}\frac{\varphi ^2(x)}{\varphi ^2(ax)}\right) \omega _2^{\varphi }\left( f;\frac{1}{\sqrt{n}}\right) +\nu _n(x)\omega _2^{\varphi }\left( f;\frac{h}{\varphi (h)}\right) , \end{aligned}$$

where

$$\begin{aligned}&\nu _n(x)=\left( \frac{7}{2}+\frac{3\sqrt{anx}}{(1-a)^{3/2}}\right) \epsilon _n(x)+\frac{1}{2}\delta _n(x). \end{aligned}$$
(29)

Proof

We use the notation \(Qf(y)=Q_h^af(y)\) and write

$$\begin{aligned} B_nf(x)-f(x)&=(Qf(x)-f(x))+(B_nf(x)-B_n(Qf)(x)\nonumber \\&\quad +(B_n(Qf)(x)-Qf(x))\nonumber \\&=:I+II+III. \end{aligned}$$
(30)

By Lemma 3(a), we have

$$\begin{aligned} |I|\le \frac{1}{2}\omega _2^{\varphi }\left( f;\frac{1}{\sqrt{n}}\right) . \end{aligned}$$
(31)

By (2) and Lemma 3(a) and (b), we see that

$$\begin{aligned} |II|&= \left| {\mathbb {E}}Qf\left( \frac{S_n(x)}{n}\right) -{\mathbb {E}}f\left( \frac{S_n(x)}{n}\right) \right| \nonumber \\&\le \frac{1}{2}\omega _2^{\varphi }\left( f;\frac{1}{\sqrt{n}}\right) \nonumber \\&\quad +\left( \frac{7}{2}+\frac{3\sqrt{anx}}{(1-a)^{3/2}}\right) P\left( \frac{S_n(x)}{n}\notin R_a\right) \omega _2^{\varphi }\left( f;\frac{h}{\varphi (h)}\right) . \end{aligned}$$
(32)

Finally, denote by \(\xi _n(x)=x+(S_n(x)/n-x)\beta _2\). Applying (9) with \(m=2\) and Lemma 3, we get

$$\begin{aligned} |III|&=\frac{1}{2}\left| {\mathbb {E}}(Qf)''(\xi _n(x))\left( \frac{S_n(x)}{n}-x\right) ^2\right| \nonumber \\&\le \frac{1}{2h^2}\omega _2^{\varphi }\left( f;\frac{1}{\sqrt{n}}\right) {\mathbb {E}}\left( \frac{S_n(x)}{n}-x\right) ^2 1_{\{S_n(x)/n\in R_a\}}\nonumber \\&\quad +\frac{1}{2h^2}\omega _2^{\varphi }\left( f;\frac{h}{\varphi (h)}\right) {\mathbb {E}}\left( \frac{S_n(x)}{n}-x\right) ^2 1_{\{S_n(x)/n\notin R_a\}}\nonumber \\&\le \frac{1}{2}\frac{\varphi ^2(x)}{\varphi ^2(ax)}\omega _2^{\varphi }\left( f;\frac{1}{\sqrt{n}}\right) \nonumber \\&\quad +\frac{1}{2h^2}\omega _2^{\varphi }\left( f;\frac{h}{\varphi (h)}\right) {\mathbb {E}}\left( \frac{S_n(x)}{n}-x\right) ^2 1_{\{S_n(x)/n\notin R_a\}}, \end{aligned}$$
(33)

where we have used (14), the inequality \(1/\sqrt{n}\le h/\varphi (h)\), and the well known fact that

$$\begin{aligned} {\mathbb {E}}\left( \frac{S_n(x)}{n}-x\right) ^2= & {} \frac{\varphi ^2(x)}{n}. \end{aligned}$$

The result follows from (30)–(33) and Lemma 4. \(\square \)

3.2 Proof of Theorem 2

Since the random variables \(S_n(x)\) and \(n-S_n(1-x)\) have the same law, we have

$$\begin{aligned} B_nf(1-x)-f(1-x)= & {} {\mathbb {E}}f\left( 1-\frac{S_n(x)}{n}\right) -f(1-x). \end{aligned}$$

On the other hand, if \(g(y)=f(1-y)\), we obviously have

$$\begin{aligned} \omega _2^{\varphi }(g;\delta )= & {} \omega _2^{\varphi }(f;\delta ),\quad \delta \ge 0. \end{aligned}$$

Thus, without loss of generality, we can assume that \(0<x\le 1/2\).

In the setting of Lemma 4, we claim that

$$\begin{aligned}&\omega _2^{\varphi }\left( f;\frac{h}{\varphi (h)}\right) \nonumber \\&\quad \le \left( 2+3\sqrt{\frac{anx}{1-a}}\right) \omega _2^{\varphi }\left( f;\frac{1}{\sqrt{n}}\right) . \end{aligned}$$
(34)

Actually, choose \(\lambda =h\sqrt{n}/\varphi (h)\) and \(\delta =1/\sqrt{n}\). By definition (14) and the fact that \(h\le ax\), we see that

$$\begin{aligned} \lambda ^2=\frac{h^2n}{\varphi ^2(h)}=\frac{\varphi ^2(ax)}{\varphi ^2(h)}=\frac{ax(1-ax)}{h(1-h)} \le \frac{ax}{h}=\frac{ax\sqrt{n}}{\varphi (ax)}=\frac{\sqrt{anx}}{\sqrt{1-ax}}\le \sqrt{\frac{anx}{1-a}}. \end{aligned}$$

This, in conjunction with (1), shows claim (34).

From Theorem 3 and (34), we have

$$\begin{aligned} \frac{|B_nf(x)-f(x)|}{\omega _2^{\varphi }(f;1/\sqrt{n})}\le 1+\frac{1}{2} \frac{\varphi ^2(x)}{\varphi ^2(ax)}+\left( 2+3\sqrt{\frac{anx}{1-a}}\right) \nu _n(x), \end{aligned}$$
(35)

where \(\nu _n(x)\) is defined in (29). Recalling the definitions of \(\epsilon _n(x)\) and \(\delta _n(x)\) given in Lemma 4, we see that

$$\begin{aligned} \left( 2+3\sqrt{\frac{anx}{1-a}}\right) \nu _n(x)\le P_3(\sqrt{nx})e^{-cnx}, \end{aligned}$$
(36)

where \(P_3(\cdot )\) is a polynomial of degree three and c is a positive constant not depending on n and x. Observe that, whenever \(t_n\rightarrow \infty \), as \(n\rightarrow \infty \), we have

$$\begin{aligned} \lim _{n\rightarrow \infty } \sup _{u\ge t_n} P_3\left( \sqrt{u}\right) e^{-cu}=0. \end{aligned}$$
(37)

Let \(\tau _n\) be as in Theorem 2. From (35) and (36), we get

$$\begin{aligned} \frac{1}{\omega _2^{\varphi }\left( f;1/\sqrt{n}\right) } \Vert B_nf-f\Vert _{[\tau _n/n,1/2]}\le 1+\frac{1}{2a}+\sup _{u\ge \tau _n} P_3\left( \sqrt{u}\right) e^{-cu}. \end{aligned}$$

By (37) and the fact that \(\tau _n\rightarrow \infty \), as \(n\rightarrow \infty \), this implies that

$$\begin{aligned} \limsup _{n\rightarrow \infty } \frac{1}{\omega _2^{\varphi }\left( f;1/\sqrt{n}\right) } \Vert B_nf-f\Vert _{[\tau _n/n,1/2]}\le 1+\frac{1}{2a}, \end{aligned}$$

which shows (7), since \(0<a<1\) is arbitrary.

On the other hand, let \(x\in (0,1/n)\). Consider the function

$$\begin{aligned} f_x(y)=\left( 1-\frac{y}{x}\right) 1_{[0,x]}(y). \end{aligned}$$

Observe that \(\omega _2^{\varphi }(f_x;1/\sqrt{n})=1\), as well as

$$\begin{aligned} B_nf_x(x)-f_x(x)= & {} {\mathbb {E}}f_x\left( \frac{S_n(x)}{n}\right) =P(S_n(x)=0)=(1-x)^n, \end{aligned}$$

thus implying that \(K_2\ge (1-x)^n\). Therefore, letting \(x\rightarrow 0\), we see that \(K_2\ge 1\). This shows (8) and completes the proof.