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Abstract. This paper deals with the approximation of functions by the
classical Bernstein polynomials in terms of the Ditzian–Totik modulus
of smoothness. Asymptotic and non-asymptotic results are respectively
stated for continuous and twice continuously differentiable functions. By
using a probabilistic approach, known results are either completed or
strengthened.
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1. Introduction and Statements of the Main Results

Let N be the set of positive integers and N0 = N∪{0}. As usual, C[0, 1] denotes
the space of all real continuous functions defined on [0, 1], and Cm[0, 1], m ∈
N0, denotes the subspace of all m-times continuously differentiable functions,
with the obvious understanding that C0[0, 1] = C[0, 1]. For m ∈ N, we denote
by Cm[0, 1] ⊃ Cm[0, 1] the set of functions f ∈ Cm−1[0, 1] such that f (m−1) is
absolutely continuous, i. e.,

f (m−1)(y) − f (m−1)(x) =
∫ y

x

g(u)du, x, y ∈ [0, 1],

for some bounded measurable function g, which can be denoted by g = f (m).

This work is partially supported by Research Project PGC2018-097621-B-I00. The second
author is also supported by Junta de Andalućıa Research Group FQM-0178.
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The indicator function of a set A is denoted by 1A, and E stands for
mathematical expectation.

Let f ∈ C[0, 1]. The sup-norm of f is simply denoted by ‖f‖, although,
more generally, we use the notation ‖f‖A = sup{|f(x)| : x ∈ A}, A ⊆ [0, 1].

The second order central difference of f is defined by

Δ2
hf(x) = f(x + h) − 2f(x) + f(x − h), h ≥ 0,

whenever x ± h ∈ [0, 1]. The Ditzian–Totik modulus of smoothness of f with
weight function ϕ(x) =

√
x(1 − x) is defined by

ωϕ
2 (f ; δ) = sup

{∣∣∣Δ2
hϕ(x)f(x)

∣∣∣ : 0 ≤ h ≤ δ, x ± hϕ(x) ∈ [0, 1]
}

, δ ≥ 0.

The classical first order modulus of continuity is simply denoted by ω(f ; δ).
In this paper, we will make use of the following important inequality

proved by Bustamante [2]:

ωϕ
2 (f ;λδ) ≤ (2 + 3λ2)ωϕ

2 (f ; δ), λ, δ ≥ 0, λδ ∈ [0, 1). (1)

Finally, the nth Bernstein polynomial of f is defined as

Bnf(x) =
n∑

k=0

f

(
k

n

)
pn,k(x), pn,k(x) =

(
n

k

)
xk(1 − x)n−k, k = 0, 1, . . . , n.

We have the probabilistic representation

Bnf(x) = Ef

(
Sn(x)

n

)
, (2)

where Sn(x) is a random variable having the binomial law with parameters n
and x, that is to say,

P (Sn(x) = k) = pn,k(x), k = 0, 1, . . . , n. (3)

Throughout this paper, whenever we write f , n, x, and y, we are assuming
that f ∈ C[0, 1], n ∈ N, and x, y ∈ [0, 1].

Following the works by Ditzian and Ivanov [4] and Totik [9], the rates of
uniform convergence for the Bernstein polynomials are characterized by

K1ω
ϕ
2

(
f ;

1√
n

)
≤ ‖Bnf − f‖ ≤ K2ω

ϕ
2

(
f ;

1√
n

)
, (4)

for some absolute constants K1 and K2. Whereas no specific values for K1

have been provided yet, different authors completed statement (4) by showing
specific values for the constant K2. In this regard, Adell and Sangüesa [1] gave
K2 = 4, Gavrea et al. [5] and Bustamante [2] provided K2 = 3, and finally,
Păltănea [7] proved the validity of K2 = 2.5, this being the best result up to
date and up to our knowledge.

This notwithstanding, if additional smoothness conditions on f are
added, then the second inequality in (4) may be valid for values of K2
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smaller than 2.5. In this respect, Bustamante and Quesada [3] and Păltănea
[8] obtained the following asymptotic result

lim
n→∞

‖Bnf − f‖
ωϕ
2 (f ; 1/

√
n)

=
1
2
, f ∈ C2[0, 1], (5)

provided that f is not an affine function.
The contribution of this paper is twofold. In first place, we strength state-

ment (5) by giving a non-asymptotic version of it. In fact, we prove the fol-
lowing result.

Theorem 1. If f ∈ C2[0, 1], then∣∣∣∣‖Bnf − f‖ − 1
2
ωϕ
2

(
f ;

1√
n

)∣∣∣∣ ≤ 1
4n

(
ω

(
f ′′;

1
3
√

n

)
+

1
4
ωϕ
2

(
f ′′;

1√
n

))
.

(6)

As a consequence, statement (5) holds true.

In second place, we complete statement (4) in the following asymptotic
form.

Theorem 2. Let (τn)n≥1 be a sequence of positive real numbers such that

τn −→ ∞,
τn

n
−→ 0, n → ∞.

If f ∈ C[0, 1] is not an affine function, then

lim sup
n→∞

1

ωϕ
2

(
f ; 1√

n

)‖Bnf − f‖[τn/n,1−τn/n] ≤ 3
2
. (7)

Moreover, we have in (4),

K2 ≥ 1. (8)

This result is based upon Theorem 3 in Sect. 3, which gives estimates of
the form

|Bnf(x) − f(x)| ≤ K2(n, x)ωϕ
2

(
f ;

1√
n

)
,

for some explicit constants K2(n, x) depending on n and x.
The paper is organized as follows. The proof of Theorem 1 is given in

Sect. 2. We show Theorem 2 in Sect. 3 with the aid of two kinds of auxiliary
results. On the one hand, we define certain smooth approximants Qa

hf of the
function f ∈ C[0, 1], by antisymmetrizing in an appropriate way the classical
Steklov means of f . On the other hand, we estimate the tail probabilities
and the truncated variance of the random variable Sn(x) appearing in the
probabilistic representation of Bnf given in (2).
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2. Proof of Theorem 1

2.1. Preliminaries

The Taylor’s formula of order m ∈ N for f ∈ Cm[0, 1], with remainder in
integral form can be written as

f(y) −
m−1∑
j=0

f (j)(x)
j!

(y − x)j

=
(y − x)m

(m − 1)!

∫ 1

0

(1 − θ)m−1f (m)(x + (y − x)θ)dθ

=
(y − x)m

m!
Ef (m)(x + (y − x)βm), (9)

where βm is a random variable with the beta density ρm(θ) = m(1 − θ)m−1,
0 ≤ θ ≤ 1.

Lemma 1. If f ∈ C2[0, 1] and δ ≥ 0, then

∣∣ωϕ
2 (f ; δ) − δ2

∥∥ϕ2f ′′∥∥∣∣ ≤ δ2

8
ωϕ
2 (f ′′; δ) .

Proof. Let h ≥ 0 with x ± h ∈ [0, 1]. Using (9) with m = 2, we get

f(x − h) = f(x) − f ′(x)h +
f ′′(x)

2
h2

+
h2

2
E (f ′′(x − hβ2) − f ′′(x)) ,

as well as

f(x + h) = f(x) + f ′(x)h +
f ′′(x)

2
h2

+
h2

2
E (f ′′(x + hβ2) − f ′′(x)) .

Adding these two identities, we obtain

Δ2
hf(x) = f ′′(x)h2

+
h2

2
E (f ′′(x + hβ2) − 2f ′′(x) + f ′′(x − hβ2)) . (10)

Replacing in (10) h by hϕ(x) and applying the reverse triangular inequality,
we have

∣∣ωϕ
2 (f ; δ) − δ2

∥∥ϕ2f ′′∥∥∣∣ ≤ δ2

2

∥∥ϕ2
∥∥ ωϕ

2 (f ′′; δ)

=
δ2

8
ωϕ
2 (f ′′; δ),

thus completing the proof. �
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Gonska et al. [6] showed that∥∥∥∥Bnf − f − 1
2n

ϕ2f ′′
∥∥∥∥ ≤ 1

4n
ω

(
f ′′;

1
3
√

n

)
. (11)

2.2. Proof of Theorem 1

Statement (6) is an inmediate consequence of (11), Lemma 1 with δ = 1/
√

n,
and the reverse and direct triangular inequalities. On the other hand, we have
from Lemma 1

ωϕ
2

(
f ;

1√
n

)
=

1
n

∥∥ϕ2f ′′∥∥ + o

(
1
n

)
,

since f ∈ C2[0, 1]. Thus, statement (5) readily follows from (6), and completes
the proof.

3. Proof of Theorem 2

3.1. Auxiliary Results

Let 0 < h ≤ 1/3. We consider the Steklov means of f defined as

Phf(y) =
∫ 1

−1

∫ 1

−1

f

(
y +

h

2
(v1 + v2)

)
dv1dv2

=
∫ 1

−1

f(y + hv)ρ(v)dv, h ≤ y ≤ 1 − h,

where

ρ(v) = (1 + v)1[−1,0] + (1 − v)1(0,1], −1 ≤ v ≤ 1.

In probabilistic terms, the Steklov means of f can be written as follows.
Let V1 and V2 be independent identically distributed random variables having
the uniform distribution on [−1, 1] and set V = (V1 + V2)/2. Since ρ(v) is the
probability density of V , we can write

Phf(y) = Ef(y + hV ), h ≤ y ≤ 1 − h. (12)

Lemma 2. Let 0 < h ≤ 1/3 and let Phf(y) be as in (12). Then,

(a)

|Phf(y) − f(y)| ≤ 1
2
ωϕ
2

(
f ;

h

ϕ(y)

)
.

(b)

|(Phf)′′(y)| ≤ 1
h2

ωϕ
2

(
f ;

h

ϕ(y)

)
.
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Proof. Since V takes values in [−1, 1] and is symmetric (i. e., V and −V have
the same law), we see that

|Phf(y) − f(y)| =
1
2

|E(f(y + hV ) + f(y − hV ) − 2f(y))| ≤ 1
2
ωϕ
2

(
f ;

h

ϕ(y)

)
,

thus showing (a). On the other hand, it can be checked that

Phf(y) =
1
h2

(
f(2)(y + h) + f(2)(y − h) − 2f(2)(y)

)
,

where f(2) is a second antiderivative of f . This readily implies part (b) and
completes the proof. �

We will make use of the approximant Phf , whose domain is the interval
[h, 1 − h], to define a further one whose domain is the whole interval [0, 1],
keeping at the same time analogous properties to those given in Lemma 2. To
this end, we assume that

n ≥ 3, 0 < a <
ϕ(a/2)√

n
+ a ≤ 1. (13)

and take

h =
ϕ(ax)√

n
,

1
a(n + 1)

≤ x ≤ 1
2
. (14)

It turns out that

h ≤ min(ax, 1/3). (15)

Now, we define the approximant Qa
hf(y) by antisymmetrizing Phf(y)

around the axes y = ax and y = 1 − ax as follows

Qa
hf(y) =

⎧⎨
⎩

2Phf(ax) − Phf(2ax − y), y ∈ [0, ax);
Phf(y), y ∈ [ax, 1 − ax];
2Phf(1 − ax) − Phf(2(1 − ax) − y), y ∈ (1 − ax, 1].

(16)

The fact that Qa
hf is well defined readily follows from (13) and (14). Also,

note that Qa
hf is twice differentiable except at the points ax and 1 − ax. In

these two points, Qa
hf only has sided second derivatives. This implies that

Qa
hf ∈ C 2[0, 1].

Lemma 3. Let Ra = [ax, 1 − ax]. Under assumptions (13) and (14), we have
(a) If y ∈ Ra, then

|Qa
hf(y) − f(y)| ≤ 1

2
ωϕ
2

(
f ;

1√
n

)
, |(Qa

hf)′′(y)| ≤ 1
h2

ωϕ
2

(
f ;

1√
n

)
.

(b) If y /∈ Ra, then

|Qa
hf(y) − f(y)| ≤

(
7
2

+
3
√

anx

(1 − a)3/2

)
ωϕ
2

(
f ;

h

ϕ(h)

)
,
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and

|(Qa
hf)′′(y)| ≤ 1

h2
ωϕ
2

(
f ;

h

ϕ(h)

)
.

Proof. (a) If y ∈ Ra, then

h

ϕ(y)
=

ϕ(ax)
ϕ(y)

1√
n

≤ 1√
n

. (17)

Thus, the first inequality in part (a) follows from Lemma 2(a) and definition
(16), whereas the second one follows from Lemma 2(b).

(b) Suppose that y ∈ [0, ax). By (16), we can write

Qa
hf(y) − f(y) = 2 (Phf(ax) − f(ax))

− (Phf(2ax − y) − f(2ax − y))

− (f(2ax − y) + f(y) − 2f(ax)) . (18)

Since h ≤ ax ≤ 2ax − y ≤ 1 − h, we see that

ϕ(ax) ≥ ϕ(h), ϕ(2ax − y) ≥ ϕ(h). (19)

We therefore have from Lemma 2(a)

|Qa
hf(y) − f(y)| ≤ 3

2
ωϕ
2

(
f ;

h

ϕ(h)

)

+ωϕ
2

(
f ;

ax

ϕ(ax)

)
. (20)

Applying (1) with λ = axϕ(h)/(hϕ(ax)) and δ = h/ϕ(h), we obtain

ωϕ
2

(
f ;

ax

ϕ(ax)

)
≤

(
2 +

3(ax)2ϕ2(h)
ϕ2(ax)h2

)
ωϕ
2

(
f ;

h

ϕ(h)

)

≤
(

2 +
3
√

anx

(1 − a)3/2

)
ωϕ
2

(
f ;

h

ϕ(h)

)
, (21)

as follows from (14) and some simple computations. Hence, the first inequality
follows from (20) and (21).

On the other hand, we have from (16), (19), and Lemma 2(b)

|(Qa
hf)′′(y)| = |(Phf)′′(2ax − y)| ≤ 1

h2
ωϕ
2

(
f ;

h

ϕ(2ax − y)

)

≤ 1
h2

ωϕ
2

(
f ;

h

ϕ(h)

)
.

If y ∈ (1 − ax, 1], the proof es similar. �

The following estimates concerning the random variable Sn(x)/n will be
needed.

Lemma 4. In the setting of Lemma 3, denote by r = 1 − a. Then,
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(a)

P

(
Sn(x)

n
/∈ Ra

)
≤ e−nxr2/2 + 3e−nxr2/(2e) =: εn(x).

(b)

1
h2

E

(
Sn(x)

n
− x

)2

1{Sn(x)
n /∈Ra}

≤ nx

a(1 − ax)

(
e−nxr2/2 + 6e−(n−2)xr2/(2e)

)
=: δn(x).

Proof. (a) As follows from (3), we have

EeθSn(x) =
(
1 + x(eθ − 1)

)n
, θ ∈ R. (22)

Let θ ≥ 0. By (22) and Chebyshev’s inequality, we have

P (Sn(x) < anx) = P
(
e−θSn(x) > e−θanx

)
≤ Ee−θSn(x)+θanx

= e−n(− log(1−x(1−e−θ))−θax) ≤ e−nx((1−e−θ)−aθ) ≤ e−nx(rθ−θ2/2), (23)

where we have used the inequalities

− log(1 − u) ≥ u, u ≥ 0, 1 − e−θ ≥ θ − θ2

2
, θ ≥ 0.

Choosing θ = r in (23) (the value minimizing the exponent), we get

P (Sn(x) < anx) ≤ e−nxr2/2. (24)

On the other hand, we claim that

P (Sn(x) > n(1 − ax)) ≤ P (Sn(x) > n(1 − ax) − 1) ≤ 3e−nxr2/(2e). (25)

Indeed, let 0 ≤ θ ≤ 1. Using the inequalities

log(1 + u) ≤ u, u ≥ 0, eθ − 1 ≤ θ +
eθ2

2
, 0 ≤ θ ≤ 1,

we have, as in the proof of (24),

P (Sn(x) > n(1 − ax) − 1) = P
(
eθSn(x) > eθn(1−ax)−θ

)

≤ EeθSn(x)−nθ(1−ax)+θ ≤ 3EeθSn(x)−nθ(1−ax)

= 3en(log(1+x(eθ−1))−θ(1−ax)) ≤ 3en(xθ+exθ2/2−θ(1−ax))

= 3enθ(2x−1)enx(eθ2/2−rθ) ≤ 3enx(eθ2/2−rθ), (26)

since x ≤ 1/2. Thus, claim (25) follows by choosing θ = r/e in (26). Hence,
part (a) follows from (24) and (25).
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(b) From (24), we see that

E

(
Sn(x)

n
− x

)2

1{Sn(x)<anx}

≤ x2P (Sn(x) < anx) ≤ x2e−nxr2/2. (27)

On the other hand, since 1 − ax ≥ 1/2, we have

k

k − 1
≤ n/2

n/2 − 1
=

n

n − 2
, k > n(1 − ax).

We therefore have

E

(
Sn(x)

n
− x

)2

1{Sn(x)>n(1−ax)} ≤ 1
n2

ESn(x)21{Sn(x)>n(1−ax)}

=
1
n2

∑
k>n(1−ax)

(
n

k

)
k2xk(1 − x)n−k

=
n − 1

n
x2

∑
k>n(1−ax)

(
n − 2
k − 2

)
k

k − 1
xk−2(1 − x)n−k

≤ n − 1
n − 2

x2P (Sn−2(x) > n(1 − ax) − 2)

≤ 2x2P (Sn−2(x) > n(1 − ax) − 2) , (28)

since n ≥ 3. Observe that

n(1 − ax) − 2 = (n − 2)(1 − ax) − 2ax ≥ (n − 2)(1 − ax) − 1,

as follows from assumptions (13) and (14). By (25), the right-hand side in (28)
can be bounded above by

2x2P (Sn−2(x) > (n − 2)(1 − ax) − 1) ≤ 6x2e−(n−2)xr2/(2e).

This, together with (27) and (28), shows part (b) and completes the proof.
�

We are in a position to give the following local estimate.

Theorem 3. In the setting of Lemma 4, we have

|Bnf(x) − f(x)| ≤
(

1 +
1
2

ϕ2(x)
ϕ2(ax)

)
ωϕ
2

(
f ;

1√
n

)
+ νn(x)ωϕ

2

(
f ;

h

ϕ(h)

)
,

where

νn(x) =
(

7
2

+
3
√

anx

(1 − a)3/2

)
εn(x) +

1
2
δn(x). (29)
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Proof. We use the notation Qf(y) = Qa
hf(y) and write

Bnf(x) − f(x) = (Qf(x) − f(x)) + (Bnf(x) − Bn(Qf)(x)

+ (Bn(Qf)(x) − Qf(x))

=: I + II + III. (30)

By Lemma 3(a), we have

|I| ≤ 1
2
ωϕ
2

(
f ;

1√
n

)
. (31)

By (2) and Lemma 3(a) and (b), we see that

|II| =
∣∣∣∣EQf

(
Sn(x)

n

)
− Ef

(
Sn(x)

n

)∣∣∣∣
≤ 1

2
ωϕ
2

(
f ;

1√
n

)

+
(

7
2

+
3
√

anx

(1 − a)3/2

)
P

(
Sn(x)

n
/∈ Ra

)
ωϕ
2

(
f ;

h

ϕ(h)

)
. (32)

Finally, denote by ξn(x) = x+(Sn(x)/n−x)β2. Applying (9) with m = 2 and
Lemma 3, we get

|III| =
1
2

∣∣∣∣∣E(Qf)′′(ξn(x))
(

Sn(x)
n

− x

)2
∣∣∣∣∣

≤ 1
2h2

ωϕ
2

(
f ;

1√
n

)
E

(
Sn(x)

n
− x

)2

1{Sn(x)/n∈Ra}

+
1

2h2
ωϕ
2

(
f ;

h

ϕ(h)

)
E

(
Sn(x)

n
− x

)2

1{Sn(x)/n/∈Ra}

≤ 1
2

ϕ2(x)
ϕ2(ax)

ωϕ
2

(
f ;

1√
n

)

+
1

2h2
ωϕ
2

(
f ;

h

ϕ(h)

)
E

(
Sn(x)

n
− x

)2

1{Sn(x)/n/∈Ra}, (33)

where we have used (14), the inequality 1/
√

n ≤ h/ϕ(h), and the well known
fact that

E

(
Sn(x)

n
− x

)2

=
ϕ2(x)

n
.

The result follows from (30)–(33) and Lemma 4. �

3.2. Proof of Theorem 2

Since the random variables Sn(x) and n − Sn(1 − x) have the same law, we
have

Bnf(1 − x) − f(1 − x) = Ef

(
1 − Sn(x)

n

)
− f(1 − x).
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On the other hand, if g(y) = f(1 − y), we obviously have

ωϕ
2 (g; δ) = ωϕ

2 (f ; δ), δ ≥ 0.

Thus, without loss of generality, we can assume that 0 < x ≤ 1/2.
In the setting of Lemma 4, we claim that

ωϕ
2

(
f ;

h

ϕ(h)

)

≤
(

2 + 3
√

anx

1 − a

)
ωϕ
2

(
f ;

1√
n

)
. (34)

Actually, choose λ = h
√

n/ϕ(h) and δ = 1/
√

n. By definition (14) and the fact
that h ≤ ax, we see that

λ2 =
h2n

ϕ2(h)
=

ϕ2(ax)
ϕ2(h)

=
ax(1 − ax)
h(1 − h)

≤ ax

h
=

ax
√

n

ϕ(ax)
=

√
anx√

1 − ax
≤

√
anx

1 − a
.

This, in conjunction with (1), shows claim (34).
From Theorem 3 and (34), we have

|Bnf(x) − f(x)|
ωϕ
2 (f ; 1/

√
n)

≤ 1 +
1
2

ϕ2(x)
ϕ2(ax)

+
(

2 + 3
√

anx

1 − a

)
νn(x), (35)

where νn(x) is defined in (29). Recalling the definitions of εn(x) and δn(x)
given in Lemma 4, we see that(

2 + 3
√

anx

1 − a

)
νn(x) ≤ P3(

√
nx)e−cnx, (36)

where P3(·) is a polynomial of degree three and c is a positive constant not
depending on n and x. Observe that, whenever tn → ∞, as n → ∞, we have

lim
n→∞ sup

u≥tn

P3

(√
u
)
e−cu = 0. (37)

Let τn be as in Theorem 2. From (35) and (36), we get
1

ωϕ
2 (f ; 1/

√
n)

‖Bnf − f‖[τn/n,1/2] ≤ 1 +
1
2a

+ sup
u≥τn

P3

(√
u
)
e−cu.

By (37) and the fact that τn → ∞, as n → ∞, this implies that

lim sup
n→∞

1
ωϕ
2 (f ; 1/

√
n)

‖Bnf − f‖[τn/n,1/2] ≤ 1 +
1
2a

,

which shows (7), since 0 < a < 1 is arbitrary.
On the other hand, let x ∈ (0, 1/n). Consider the function

fx(y) =
(
1 − y

x

)
1[0,x](y).

Observe that ωϕ
2 (fx; 1/

√
n) = 1, as well as

Bnfx(x) − fx(x) = Efx

(
Sn(x)

n

)
= P (Sn(x) = 0) = (1 − x)n,
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thus implying that K2 ≥ (1 − x)n. Therefore, letting x → 0, we see that
K2 ≥ 1. This shows (8) and completes the proof.
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