1 Introduction

A domain \({{\mathcal {G}}}\subset {\mathbb {C}}^n\), \(n\ge 2\), is called complete n-circular, if \(z\Lambda =(z_1\lambda _1,\ldots ,z_n\lambda _n)\in {\mathcal {G}}\) for each \(z=(z_1,\ldots ,z_n)\in {{\mathcal {G}}}\) and every \(\Lambda =(\lambda _1,\ldots ,\lambda _n)\in \overline{{{\mathcal {U}}}^n}\), where \({{\mathcal {U}}}\) is the disc \(\{\zeta \in {\mathbb {C}}:|\zeta |<1\}\). In the paper we assume that \({{\mathcal {G}}}\) is a bounded complete n-circular domain. Let us consider the Minkowski function \(\mu _{{\mathcal {G}}}:{\mathbb {C}}^n\rightarrow [0,\infty )\)

$$\begin{aligned} \mu _{{\mathcal {G}}}(z)=inf\left\{ t>0:\frac{1}{t}z\in G\right\} ,\quad z\in {\mathbb {C}}^n. \end{aligned}$$

We shall use the continuity of \(\mu _{{\mathcal {G}}}\) and the following facts as well:

  1. (i)

    \({{\mathcal {G}}}=\{z\in {\mathbb {C}}^n:\mu _{{\mathcal {G}}}(z)<1\}\),

  2. (ii)

    \(\partial {{\mathcal {G}}}=\{z\in {\mathbb {C}}^n: \mu _{\mathcal {G}}(z)=1\}\).

Moreover, if a domain \({{\mathcal {G}}}\) is additionally bounded and convex, we have \(\mu _{{{\mathcal {G}}}}(\cdot )=||\cdot ||\) (see [9]).

Let \({{\mathcal {H}}}_{{{\mathcal {G}}}}\) denote a family of holomorphic functions \(f:{{\mathcal {G}}}\rightarrow {\mathbb {C}}\) and let \({{\mathcal {L}}}:{{\mathcal {H}}}_{\mathcal {G}}\rightarrow {{\mathcal {H}}}_{{{\mathcal {G}}}}\) be the Temljakov linear operator [10], which is defined by

$$\begin{aligned} {\mathcal {L}}f(z)=f(z)+Df(z)(z),\quad z\in {{\mathcal {G}}}, \end{aligned}$$
(1)

where Df(z)(w) is the value of the Frechet’s derivative Df(z) of f at the point z on a vector w (here Df(z) is the row vector \(\left[ \frac{\partial f(z)}{\partial z_{1}},...,\frac{\partial f(z)}{\partial z_{n}} \right] \) and w is a column vector).

It is also know (see [10]) that the inverse of the Temljakov operator has the following form

$$\begin{aligned} ({{\mathcal {L}}}^{-1}f)(z)=\int _0^1 f(tz)dt,\quad z\in G. \end{aligned}$$
(2)

In order to show our results, we will use the following property of the Temljakov operator.

Lemma 1

If \(u,v\in \mathcal {H_{G}}\) then

$$\begin{aligned} {\mathcal {L}}\left( u(z)v(z)\right) =-u(z)v(z)+u(z){\mathcal {L}}v(z)+v(z) {\mathcal {L}}u(z),\text { }z\in {\mathcal {G}}. \end{aligned}$$
(3)

Proof

$$\begin{aligned} {\mathcal {L}}\left( u(z)v(z)\right)= & {} u(z)v(z)+D[u(z)v(z)](z) \\= & {} u(z)v(z)+u(z)D[v(z)](z)+v(z)D[u(z)](z). \end{aligned}$$

After adding and subtracting the product u(z)v(z) in the above equality we obtain

$$\begin{aligned} {\mathcal {L}}\left( u(z)v(z)\right)= & {} u(z)[v(z)+Dv(z)(z)] \\&+v(z[u(z)+Du(z)(z)]-u(z)v(z) \\= & {} -u(z)v(z)+u(z){\mathcal {L}}v(z)+v(z){\mathcal {L}}u(z). \end{aligned}$$

\(\square \)

We will consider some subfamilies \(X_{{\mathcal {G}}}\) of functions \(f\in {\mathcal {H}}_{{\mathcal {G}}} (1)\), where \({{\mathcal {H}}}_{{{\mathcal {G}}}}(1)=\{f\in {{\mathcal {H}}}_{{{\mathcal {G}}}}: f(0)=1\}\). The below subfamilies \(\mathcal {X_{G}}\) are defined by the family \(\mathcal {C_{G}},\)

$$\begin{aligned} \mathcal {C_{G}}=\{f\in \mathcal {H_{G}}(1): Re f(z)>0,z\in {\mathcal {G}}\}. \end{aligned}$$

We say that a function \(f\in {\mathcal {H}}_{{\mathcal {G}}}(1)\) belongs to \(\mathcal {M_{G}},\)\(\mathcal {N_{G}}\), \({{\mathcal {R}}}_{{\mathcal {G}}}\) (see [1]) if there exists a function \(h\in \mathcal {C_{G}}\) such that

$$\begin{aligned} {\mathcal {L}}f(z)= & {} f(z)h(z),\quad z\in {\mathcal {G}}, \\ \mathcal {LL}f(z)= & {} {\mathcal {L}}f(z)h(z),\quad z\in {\mathcal {G}} \\ {\mathcal {L}}f(z)= & {} {\mathcal {L}}\varphi (z)h(z) ,\quad \varphi \in {\mathcal {N}}_{{\mathcal {G}}}, \quad z\in {\mathcal {G}}, \end{aligned}$$

respectively.

In the case \(n=2\) Bavrin ( [1]) gave the following geometrical interpretation for functions from \({{\mathcal {M}}}_{{{\mathcal {G}}}}\). A function f belongs to \({{\mathcal {M}}}_G\) if and only if

  1. (i)

    the function \(z_1f(z_1,z_2)\) is univalent starlike in the intersection of the domain \({{\mathcal {G}}}\) by every analitic plane \(z_2=\alpha z_1\), \(\alpha \in {\mathbb {C}}\). In other words the function \(z_1f(z_1,\alpha z_1)\) of one variable is univalent starlike in the disc, which is the projection of the intersection \({{\mathcal {G}}}\cap \{z_2=\alpha z_1\}\) onto the plane \(z_2=0\),

  2. (ii)

    the function \(z_2f(0,z_2)\) is univalent starlike in the intersection \({{\mathcal {G}}}\cap \{z_1=0\}\).

In connection with this interpretation we say that the family \({{\mathcal {M}}}_{{\mathcal {G}}}\) corresponds to the class \({\mathcal {S}}^*\) of normalize univalent starlike functions \(F:{{\mathcal {U}}}\rightarrow {\mathbb {C}}\). In the same way we can say that the family \({{\mathcal {N}}}_{{\mathcal {G}}}\) (\({{\mathcal {R}}}_{{\mathcal {G}}}\)) corresponds to the class \({{\mathcal {S}}}^c\) (\({{\mathcal {S}}}^{cc}\)) (see [4]) of normalized univalent convex (close-to-convex) functions.

In the papers [3, 5] the notion of \(\mathcal {G-}\)balance of linear functionals \(A:{\mathbb {C}}^n\rightarrow {\mathbb {C}}\) was defined as follows

$$\begin{aligned} \mu _{{\mathcal {G}}}({A})=\sup _{w\in {\mathbb {C}}^{n}{\setminus } \{0\}} \frac{\left| {A}(w)\right| }{\mu _{{{\mathcal {G}}}}(w)}\quad =\sup _{v\in \partial {\mathcal {G}}}\left| {A}(v)\right| =\sup _{u\in {\mathcal {G}}}\left| {A}(u)\right| \text {.} \end{aligned}$$

Moreover, if the domain \({\mathcal {G}}\) is also convex then \(\mu _{{{\mathcal {G}}}}(A)\) is a norm of the linear functional A.

Therefore \(\mu _{{\mathcal {G}}}({\widehat{I}})\) for the linear functional \({\widehat{I}}:{\mathbb {C}}^{n}\rightarrow C\) defined by

$$\begin{aligned} {\widehat{I}}\left( z\right) =\sum _{j=1}^{n}z_{j},\quad \quad z=(z_{1},\ldots ,z_{n})\in {\mathbb {C}}^{n}, \end{aligned}$$

means the same as \(\Delta =\Delta ( {\mathcal {G}})\)-characteristic of domain \({\mathcal {G}}\) which Bavrin defined in [1] as follows

$$\begin{aligned} \Delta =\sup _{z=(z_{1},\ldots ,z_{n})\in {\mathcal {G}}}\left| \sum _{j=1}^{n}z_{j}\right| . \end{aligned}$$

In the sequel I :  \({\mathbb {C}}^{n}\rightarrow {\mathbb {C}}\) is a linear operator defined by

$$\begin{aligned} I\left( z\right) =\frac{1}{\mu _{{\mathcal {G}}}({\widehat{I}})}{\widehat{I}}\left( z\right) , \quad z\in {\mathbb {C}}^{n}. \end{aligned}$$

We can see that \(\mu _{{\mathcal {G}}}\left( I\right) =1\) and we have

$$\begin{aligned} |I\left( z\right) |\le \mu _{{\mathcal {G}}}\left( I\right) \mu _{{\mathcal {G}} }\left( z\right) <1,\quad z\in {\mathcal {G}}. \end{aligned}$$

Let \(k\ge 2\) be an arbitrarily fixed integer, \(\varepsilon =\varepsilon _{k}=\exp \frac{2\pi i}{k}\) and a set \({\mathcal {D}}\subset {\mathbb {C}}^{n}\) be \(k-\)symmetric \((\varepsilon \mathcal {D=D}).\) For \( j=0,1,\ldots ,k-1\) we define the spaces \({\mathcal {F}}_{j,k}={\mathcal {F}}_{j,k}( {\mathcal {D}})\) of functions \(\left( j,k\right) \)-symmetrical, i.e., all functions \(f:{\mathcal {D}}\rightarrow {\mathbb {C}}\) such that

$$\begin{aligned} f\left( \varepsilon z\right) =\varepsilon ^{j}f\left( z\right) , \quad z\in {\mathcal {D}}. \end{aligned}$$

A very useful result concerning with \(\left( j,k\right) \)-symmetrical functions is the following [7]:

For every function \(f:{\mathcal {D}}\rightarrow {\mathbb {C}}\) there exists exactly one sequence of functions \(f_{j,k}\in {\mathcal {F}}_{j,k},\)\( j=0,1,\ldots ,k-1,\) such that

$$\begin{aligned} \begin{aligned} f&=\sum _{j=0}^{k-1}f_{j,k}, \\ f_{j,k}\left( z\right)&=\frac{1}{k}\sum _{l=0}^{k-1}\varepsilon ^{-jl}f\left( \varepsilon ^{l}z\right) ,\quad z\in {\mathcal {D}}. \end{aligned} \end{aligned}$$
(4)

By the uniqueness of the partition (4) the functions \(f_{j,k} \) will be called further \(\left( j,k\right) -\)symmetrical components of the function f. Moreover, note that n-circular domain is k-symmetric.

2 The Majorization Problem

Let \(f,F\in {{\mathcal {H}}}_{{{\mathcal {G}}}}\) and \(r\in [0,1]\). If

$$\begin{aligned} |f(z)|\le |F(z)|,\quad z\in r{{\mathcal {G}}}, \end{aligned}$$
(5)

we say that the function F majorizes the function f in the set \(r{{\mathcal {G}}}\).

The second author (see [6]) has proved that if in a complete bounded two-circular domain \({{\mathcal {G}}}\subset {\mathbb {C}}^2\) a function \(F\in {{\mathcal {M}}}_{{{\mathcal {G}}}}\) majorizes a function \(f\in {{\mathcal {H}}}_{{{\mathcal {G}}}}\), then \({\mathcal {L}}F\) majorizes \({\mathcal {L}}f\) in \(r{{\mathcal {G}}}\), \(r=r({{\mathcal {M}}}_{{{\mathcal {G}}}})=2-\sqrt{3}\).

Moreover, the number \(r({{\mathcal {M}}}_{{{\mathcal {G}}}})\) cannot be increased by taking \({{\mathcal {G}}}\), to be the cone in \({\mathbb {C}}^2\)

$$\begin{aligned} A(2;1)=\{z\in {\mathbb {C}}^2:|z_1|+|z_2|<1\}. \end{aligned}$$

Moreover, in paper [5] an analogous result optimal in case of any complete bounded n-circular domain \(G\subset {\mathbb {C}}^n\) for the superclass \({{\mathcal {R}}}_G\) of the class \({\mathcal {M}}_G\) was given.

The main theorem is preceded by lemma.

Lemma 2

If the function \(F\in {{\mathcal {H}}}_{{{\mathcal {G}}}}(1)\) belongs to the family \({{\mathcal {M}}}_{{{\mathcal {G}}}}\cap {{\mathcal {F}}}_{0,k}({{\mathcal {G}}})\), then for each fixed point \(z\in {{{\mathcal {G}}}{\setminus }\{0\}}\), the function \(G_z:{{\mathcal {U}}}\rightarrow {\mathbb {C}}\)

$$\begin{aligned} G_z(\xi )=\xi F\left( \xi \frac{z}{\mu _{{{\mathcal {G}}}}(z)}\right) , \quad \xi \in {{\mathcal {U}}} \end{aligned}$$
(6)

belongs to the family \(S^*\cap {{\mathcal {F}}}_{1,k}({{\mathcal {U}}})\) of the (1, k)-symmetric univalent starlike functions with normalization \(G_z(0)=0, (G_z)'(0)=1\).

Proof

Proof of the relation \(G_z\in S^*\) we can find in [1]. The (1, k) symmetry of \(G_z\) follows from the following equalities

$$\begin{aligned} G_z(\varepsilon \xi )=\varepsilon \xi F\left( \varepsilon \xi \frac{z}{\mu _{{{\mathcal {G}}}}(z)}\right) =\varepsilon \xi F\left( \xi \frac{z}{\mu _{{{\mathcal {G}}}}(z)}\right) =\varepsilon G_z(\xi ). \end{aligned}$$

\(\square \)

Theorem 1

Let \({\mathcal {G}}\subset {\mathbb {C}}^n\), \(n\ge 2\) be a bounded complete n-circular domain. If a function \(f\in {\mathcal {H}}_{{\mathcal {G}}}\) is majorized in \({\mathcal {G}}\) by a function \(F\in {\mathcal {M}}_{\mathcal {G}}\cap {\mathcal {F}}_{0,k}\), then

$$\begin{aligned} |{\mathcal {L}}f(z)|\le {T}(r)|{\mathcal {L}}F(z)|,\quad \mu _{{\mathcal {G}}}(z)=r\in [0,1), \end{aligned}$$
(7)

where

$$\begin{aligned} {T}(r)=\left\{ \begin{array}{lcl} 1 &{}\text{ for } &{} r\in [0, r_k],\\ \frac{(1-r^k)^2(1-r^2)^2+4r^2(1+r^k)^2}{4r(1-r^2)(1-r^{2k})} &{} \text{ for } &{} r\in [r_k,1).\\ \end{array}\right. \end{aligned}$$
(8)

and \(r_{k}\) is the unique solution in (0, 1) of the equation

$$\begin{aligned} r^{k+2}-2r^{k+1}-r^{k}-2r+1=0. \end{aligned}$$
(9)

The function T in (7) cannot be replaced by any function with values T(r) smaller than the values of T defined by (8).

Proof

Let \(f\in {\mathcal {H}}_{\mathcal {G}}\), \(F\in {\mathcal {M}}_{\mathcal {G}}\cap {\mathcal {F}}_{0,k}\). Thus by (5) we have

$$\begin{aligned} f(z)=\omega (z)F(z), \quad z\in {\mathcal {G}} \end{aligned}$$
(10)

where \(\omega \in S_{\mathcal {G}}\cup \{1\}\) and \(S_{\mathcal {G}}=\{\omega \in {\mathcal {H}}_{\mathcal {G}}: \omega ({\mathcal {G}})\subset {\mathcal {U}}\}\).

Indeed, since \(F(z){\mathcal {L}}F(z)\ne 0\) for \(F\in {\mathcal {M}}_{\mathcal {G}}\cap {\mathcal {F}}_{0,k}\), \(z\in {\mathcal {G}}\) (see [1]), we have in view of (5) that

$$\begin{aligned} \left| \frac{f(z)}{F(z)}\right| \le 1, \quad z\in {\mathcal {G}}. \end{aligned}$$

Consequently, the function \(\omega (z)=\frac{f(z)}{F(z)}\), \(z\in {\mathcal {G}}\) is holomorphic in \({\mathcal {G}}\) and \(|\omega (z)|<1\) for \(z\in {\mathcal {G}}\) or \(\omega (z)\equiv 1\) in \({\mathcal {G}}\). Now, we will found the upper bound of the quotient \(\left| \frac{{\mathcal {L}}f(z)}{{\mathcal {L}}F(z)}\right| \), \(z\in {\mathcal {G}}\). If \(\mu _{{\mathcal {G}}}(z)=r\in [0,1)\), then (10) and (3) give

$$\begin{aligned} \left| \frac{{\mathcal {L}}f(z)}{{\mathcal {L}}F(z)}\right|= & {} \left| \frac{{\mathcal {L}}[\omega (z)F(z)]}{{\mathcal {L}}F(z)}\right| =\left| \frac{D\omega (z)(z)F(z)}{\mathcal {L}F(z)}+\omega (z)\right| \\\le & {} \left| D\omega (z)(z)\right| \left| \frac{F(z)}{{\mathcal {L}}F(z)}\right| +|\omega (z)|. \end{aligned}$$

Let us recall that for \(\omega \in S_{{\mathcal {G}}}\cup \{1\}\) we have (see [1])

$$\begin{aligned} |D\omega (z)(z)|\le \frac{r}{1-r^2}(1-|\omega (z)|^2), \quad \mu _G(z)=r\in [0,1). \end{aligned}$$

Now we go to the estimate of the expression \(\left| \frac{{{\mathcal {F}}}(z)}{\mathcal {L}F(z)}\right| \). We will use Lemma 2. It is known (see [11]) that for the function \(G\in S^*\cap {{\mathcal {F}}}_{1,k}({{\mathcal {U}}})\) there holds the bound

$$\begin{aligned} \left| \frac{G(\xi )}{\xi G'(\xi )}\right| \le \frac{1+|\xi |^k}{1-|\xi |^k}, \quad 0\le |\xi |<1, \quad k\ge 2. \end{aligned}$$

Taking into account the above \(\xi =\mu _{{{\mathcal {G}}}}(z)=r\in [0,1)\) we have by (6)

$$\begin{aligned} \left| \frac{F(z)}{{\mathcal {L}}F(z)}\right| \le \frac{1+r^k}{1-r^k}. \end{aligned}$$

As a result we have

$$\begin{aligned} \left| \frac{{\mathcal {L}}f(z)}{\mathcal {L}F(z)}\right| \le \frac{1+r^k}{1-r^k}\frac{r}{1-r^2}(1-\left| \omega (z)\right| ^2)+\left| \omega (z)\right| ,\quad r\in [0,1). \end{aligned}$$

Let us consider the right-hand side part of this inequality as a square function of the variable x:

$$\begin{aligned} y_r(x)=-\frac{1+r^k}{1-r^k}\frac{r}{1-r^2}x^2+x+\frac{1+r^k}{1-r^k}\frac{r}{1-r^2}, \quad x=\left| \omega (z)\right| . \end{aligned}$$

Then its maximum in interval [0,1] is equal to

$$\begin{aligned} \frac{(1-r^k)^2(1-r^2)^2+4r^2(1+r^k)^2}{4r(1-r^2)(1-r^{2k})}\quad for \quad r\in (r_k,1) \end{aligned}$$

and it is 1 for \(r\in [0,r_k]\).

Indeed, the maximum ordinate \(y_v\) is attained for the abscissa \(x_v\in (0,1)\), in opposite case the maximum \(y_v=y_v(1)=1\). Setting

$$\begin{aligned} x_v=x_v(r)=\frac{(1-r^k)(1-r^2)}{2r(1+r^k)}, \quad r\in (0,1] \end{aligned}$$
(11)

we have

$$\begin{aligned} x_v(r)<1 \end{aligned}$$

if

$$\begin{aligned} r^{k+2}-2r^{k+1}-r^k-r^2-2r+1<0,\quad r\in (0,1]. \end{aligned}$$

Now, we show that the polynomial

$$\begin{aligned} q(r)=r^{k+2}-2r^{k+1}-r^k-r^2-2r+1 \end{aligned}$$

has exactly one root in the interval (0, 1). Finally, it is sufficient to note that

$$\begin{aligned} q(0) q(1)<0 \end{aligned}$$

and for \(r\in [0,1)\)

$$\begin{aligned} q'(r)= & {} (k+2)r^{k+1}-2(k+1)r^k-kr^{k-1}-2r-2\\= & {} kr^{k-1}(r^2-1)+2r(r^k-1)-2(k+1)r^k-2<0. \end{aligned}$$

Therefore in the interval (0, 1) the function q(r) has exactly one root \(r_k\).

For \(x_v\) given by (11) we have

$$\begin{aligned} y_v=\frac{(1-r^k)^2(1-r^2)^2+4r^2(1+r^k)^2}{4r(1-r^2)(1-r^{2k})} \quad for \quad r\in [r_k,1]. \end{aligned}$$

Hence we obtain (8).

In order to prove the second part of the theorem, let us assume that \(r\in [r_k,1)\), the point \({\mathop {z}\limits ^{\circ }}\in {{\mathcal {G}}}\), \(\mu _{{{\mathcal {G}}}}({\mathop {z}\limits ^{\circ }})=r\) and the function f is of the form

$$\begin{aligned} f(z)=\omega (z) F(z), \end{aligned}$$

where

$$\begin{aligned} F(z)=\frac{1}{[1+I^k(z)]^{\frac{2}{k}}}\in {\mathcal {M}}_{{\mathcal {G}}}\cap {\mathcal {F}}_{0,k}, \end{aligned}$$

\(I^k(z)\) means the product of k identical factors I(z) (see [2]) and

$$\begin{aligned} \omega (z)= & {} \frac{\alpha +I(z)}{1+\alpha I(z)},\quad z\in {{\mathcal {G}}}, \\ \alpha= & {} \frac{(1-r^k)(1-r^2)-2r^2(1+r^k)}{r[2(1+r^k)-(1-r^k)(1-r^2)]}. \end{aligned}$$

We set the \(\alpha \) parameter from the condition

$$\begin{aligned} \frac{\alpha +I(z)}{1+\alpha I(z)}=\frac{(1-r^k)(1-r^2)}{2r(1+r^k)}, \quad z=(r, 0,\ldots ,0), \quad \alpha \in (0,1). \end{aligned}$$

Thus \(F\in {\mathcal {M}}_{{\mathcal {G}}}\cap {\mathcal {F}}_{0,k}\), f is majorized by F in \({{\mathcal {G}}}\) and for the point \({\mathop {z}\limits ^{\circ }}\) we have equality in (7). However, by putting \(f=F\) for \(r\in [0,r_k]\), where \(F\in {\mathcal {M}}_{{\mathcal {G}}}\cap {\mathcal {F}}_{0,k}\), we have \({\mathcal {L}}f={\mathcal {L}}F\) and equality in (7) holds for points \(z\in {{\mathcal {G}}}\) such that \(\mu _{{\mathcal {G}}}(z)=r\in [0,r_k]\). This completes the proof. \(\square \)

Corollary 1

Let \(n\ge 2\) and \({{\mathcal {G}}}\) be a bounded complete n-circular domain of \({\mathbb {C}}^n\). If a function \(F\in {\mathcal {M}}_{\mathcal {G}}\cap {\mathcal {F}}_{0,k}\) majorizes a function \(f\in {{\mathcal {H}}}_{{\mathcal {G}}}\) in \({{\mathcal {G}}}\), then the function \({\mathcal {L}}F\) majorizes the function \({\mathcal {L}}f\) in the domain \(r_k{{\mathcal {G}}}\), where \(r_k\) is the unique solution in (0, 1) of the equation (9). The constant \(r_k\) cannot be replaced by any greater number r.