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Abstract. The paper concerns holomorphic functions in complete bounded
n-circular domains G of the space C

n. The object of the present investiga-
tion is to solve majorization problem of Temljakov operator. This type of
problem has been studied earlier in Liczberski and Żywień (Folia Sci Univ
Tech Res 33:37–42, 1986), Liczberski (Bull Technol Sci Univ �Lódź 20:29–
37, 1988) and Leś-Bomba and Liczberski (Demonstratio Math 42(3):491–
503, 2009). In this paper we considered the family MG ∩ F0,k(G), i.e. the
functions of the Bavrin family MG , which are (0, k)-symmetrical.
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1. Introduction

A domain G ⊂ C
n, n ≥ 2, is called complete n-circular, if zΛ = (z1λ1, . . . , znλn)

∈ G for each z = (z1, . . . , zn) ∈ G and every Λ = (λ1, . . . , λn) ∈ Un, where U is
the disc {ζ ∈ C : |ζ| < 1}. In the paper we assume that G is a bounded complete
n-circular domain. Let us consider the Minkowski function μG : Cn → [0,∞)

μG(z) = inf

{
t > 0:

1
t
z ∈ G

}
, z ∈ C

n.

We shall use the continuity of μG and the following facts as well:

(i) G = {z ∈ C
n : μG(z) < 1},

(ii) ∂G = {z ∈ C
n : μG(z) = 1}.
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Moreover, if a domain G is additionally bounded and convex, we have μG(·) =
|| · || (see [9]).

Let HG denote a family of holomorphic functions f : G → C and let
L : HG → HG be the Temljakov linear operator [10], which is defined by

Lf(z) = f(z) + Df(z)(z), z ∈ G, (1)

where Df(z)(w) is the value of the Frechet’s derivative Df(z) of f at the
point z on a vector w (here Df(z) is the row vector

[
∂f(z)
∂z1

, ..., ∂f(z)
∂zn

]
and w is

a column vector).
It is also know (see [10]) that the inverse of the Temljakov operator has

the following form

(L−1f)(z) =
∫ 1

0

f(tz)dt, z ∈ G. (2)

In order to show our results, we will use the following property of the
Temljakov operator.

Lemma 1. If u, v ∈ HG then

L (u(z)v(z)) = −u(z)v(z) + u(z)Lv(z) + v(z)Lu(z), z ∈ G. (3)

Proof.

L (u(z)v(z)) = u(z)v(z) + D[u(z)v(z)](z)
= u(z)v(z) + u(z)D[v(z)](z) + v(z)D[u(z)](z).

After adding and subtracting the product u(z)v(z) in the above equality
we obtain

L (u(z)v(z)) = u(z)[v(z) + Dv(z)(z)]
+v(z[u(z) + Du(z)(z)] − u(z)v(z)

= −u(z)v(z) + u(z)Lv(z) + v(z)Lu(z).

�

We will consider some subfamilies XG of functions f ∈ HG(1), where
HG(1) = {f ∈ HG : f(0) = 1}. The below subfamilies XG are defined by the
family CG ,

CG = {f ∈ HG(1) : Ref(z) > 0, z ∈ G}.

We say that a function f ∈ HG(1) belongs to MG , NG , RG (see [1]) if
there exists a function h ∈ CG such that

Lf(z) = f(z)h(z), z ∈ G,

LLf(z) = Lf(z)h(z), z ∈ G
Lf(z) = Lϕ(z)h(z), ϕ ∈ NG , z ∈ G,

respectively.
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In the case n = 2 Bavrin ( [1]) gave the following geometrical interpreta-
tion for functions from MG . A function f belongs to MG if and only if

(i) the function z1f(z1, z2) is univalent starlike in the intersection of the
domain G by every analitic plane z2 = αz1, α ∈ C. In other words the
function z1f(z1, αz1) of one variable is univalent starlike in the disc, which
is the projection of the intersection G ∩{z2 = αz1} onto the plane z2 = 0,

(ii) the function z2f(0, z2) is univalent starlike in the intersection G∩{z1 = 0}.
In connection with this interpretation we say that the family MG corre-

sponds to the class S∗ of normalize univalent starlike functions F : U → C. In
the same way we can say that the family NG (RG) corresponds to the class Sc

(Scc) (see [4]) of normalized univalent convex (close-to-convex) functions.
In the papers [3,5] the notion of G−balance of linear functionals A : Cn →

C was defined as follows

μG(A) = sup
w∈Cn\{0}

|A(w)|
μG(w)

= sup
v∈∂G

|A(v)| = sup
u∈G

|A(u)| .

Moreover, if the domain G is also convex then μG(A) is a norm of the
linear functional A.

Therefore μG(Î) for the linear functional Î : Cn → C defined by

Î (z) =
n∑

j=1

zj , z = (z1, . . . , zn) ∈ C
n,

means the same as Δ = Δ(G)-characteristic of domain G which Bavrin defined
in [1] as follows

Δ = sup
z=(z1,...,zn)∈G

∣∣∣∣∣∣
n∑

j=1

zj

∣∣∣∣∣∣ .

In the sequel I : Cn → C is a linear operator defined by

I (z) =
1

μG(Î)
Î (z) , z ∈ C

n.

We can see that μG (I) = 1 and we have

|I (z) | ≤ μG (I)μG (z) < 1, z ∈ G.

Let k ≥ 2 be an arbitrarily fixed integer, ε = εk = exp 2πi
k and a set

D ⊂ C
n be k−symmetric (εD = D). For j = 0, 1, . . . , k−1 we define the spaces

Fj,k = Fj,k(D) of functions (j, k)-symmetrical, i.e., all functions f : D → C

such that

f (εz) = εjf (z) , z ∈ D.

A very useful result concerning with (j, k)-symmetrical functions is the
following [7]:
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For every function f : D → C there exists exactly one sequence of func-
tions fj,k ∈ Fj,k, j = 0, 1, . . . , k − 1, such that

f =
k−1∑
j=0

fj,k,

fj,k (z) =
1
k

k−1∑
l=0

ε−jlf
(
εlz

)
, z ∈ D.

(4)

By the uniqueness of the partition (4) the functions fj,k will be called fur-
ther (j, k) −symmetrical components of the function f . Moreover, note that
n-circular domain is k-symmetric.

2. The Majorization Problem

Let f, F ∈ HG and r ∈ [0, 1]. If

|f(z)| ≤ |F (z)|, z ∈ rG, (5)

we say that the function F majorizes the function f in the set rG.
The second author (see [6]) has proved that if in a complete bounded

two-circular domain G ⊂ C
2 a function F ∈ MG majorizes a function f ∈ HG ,

then LF majorizes Lf in rG, r = r(MG) = 2 − √
3.

Moreover, the number r(MG) cannot be increased by taking G, to be the
cone in C

2

A(2; 1) = {z ∈ C
2 : |z1| + |z2| < 1}.

Moreover, in paper [5] an analogous result optimal in case of any complete
bounded n-circular domain G ⊂ C

n for the superclass RG of the class MG

was given.
The main theorem is preceded by lemma.

Lemma 2. If the function F ∈ HG(1) belongs to the family MG ∩F0,k(G), then
for each fixed point z ∈ G\{0}, the function Gz : U → C

Gz(ξ) = ξF

(
ξ

z

μG(z)

)
, ξ ∈ U (6)

belongs to the family S∗ ∩ F1,k(U) of the (1, k)-symmetric univalent starlike
functions with normalization Gz(0) = 0, (Gz)′(0) = 1.

Proof. Proof of the relation Gz ∈ S∗ we can find in [1]. The (1, k) symmetry
of Gz follows from the following equalities

Gz(εξ) = εξF

(
εξ

z

μG(z)

)
= εξF

(
ξ

z

μG(z)

)
= εGz(ξ).

�
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Theorem 1. Let G ⊂ C
n, n ≥ 2 be a bounded complete n-circular domain. If a

function f ∈ HG is majorized in G by a function F ∈ MG ∩ F0,k, then

|Lf(z)| ≤ T (r)|LF (z)|, μG(z) = r ∈ [0, 1), (7)

where

T (r) =

{
1 for r ∈ [0, rk],
(1−rk)2(1−r2)2+4r2(1+rk)2

4r(1−r2)(1−r2k)
for r ∈ [rk, 1).

(8)

and rk is the unique solution in (0, 1) of the equation

rk+2 − 2rk+1 − rk − 2r + 1 = 0. (9)

The function T in (7) cannot be replaced by any function with values T (r)
smaller than the values of T defined by (8).

Proof. Let f ∈ HG , F ∈ MG ∩ F0,k. Thus by (5) we have

f(z) = ω(z)F (z), z ∈ G (10)

where ω ∈ SG ∪ {1} and SG = {ω ∈ HG : ω(G) ⊂ U}.
Indeed, since F (z)LF (z) �= 0 for F ∈ MG ∩F0,k, z ∈ G (see [1]), we have

in view of (5) that ∣∣∣∣ f(z)
F (z)

∣∣∣∣ ≤ 1, z ∈ G.

Consequently, the function ω(z) = f(z)
F (z) , z ∈ G is holomorphic in G and |ω(z)| <

1 for z ∈ G or ω(z) ≡ 1 in G. Now, we will found the upper bound of the
quotient

∣∣∣ Lf(z)
LF (z)

∣∣∣, z ∈ G. If μG(z) = r ∈ [0, 1), then (10) and (3) give∣∣∣∣ Lf(z)
LF (z)

∣∣∣∣ =
∣∣∣∣L[ω(z)F (z)]

LF (z)

∣∣∣∣ =
∣∣∣∣Dω(z)(z)F (z)

LF (z)
+ ω(z)

∣∣∣∣
≤ |Dω(z)(z)|

∣∣∣∣ F (z)
LF (z)

∣∣∣∣ + |ω(z)|.

Let us recall that for ω ∈ SG ∪ {1} we have (see [1])

|Dω(z)(z)| ≤ r

1 − r2
(1 − |ω(z)|2), μG(z) = r ∈ [0, 1).

Now we go to the estimate of the expression
∣∣∣ F(z)
LF (z)

∣∣∣. We will use Lemma 2.
It is known (see [11]) that for the function G ∈ S∗ ∩ F1,k(U) there holds the
bound ∣∣∣∣ G(ξ)

ξG′(ξ)

∣∣∣∣ ≤ 1 + |ξ|k
1 − |ξ|k , 0 ≤ |ξ| < 1, k ≥ 2.

Taking into account the above ξ = μG(z) = r ∈ [0, 1) we have by (6)∣∣∣∣ F (z)
LF (z)

∣∣∣∣ ≤ 1 + rk

1 − rk
.
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As a result we have∣∣∣∣ Lf(z)
LF (z)

∣∣∣∣ ≤ 1 + rk

1 − rk

r

1 − r2
(1 − |ω(z)|2) + |ω(z)| , r ∈ [0, 1).

Let us consider the right-hand side part of this inequality as a square function
of the variable x:

yr(x) = −1 + rk

1 − rk

r

1 − r2
x2 + x +

1 + rk

1 − rk

r

1 − r2
, x = |ω(z)| .

Then its maximum in interval [0,1] is equal to

(1 − rk)2(1 − r2)2 + 4r2(1 + rk)2

4r(1 − r2)(1 − r2k)
for r ∈ (rk, 1)

and it is 1 for r ∈ [0, rk].
Indeed, the maximum ordinate yv is attained for the abscissa xv ∈ (0, 1),

in opposite case the maximum yv = yv(1) = 1. Setting

xv = xv(r) =
(1 − rk)(1 − r2)

2r(1 + rk)
, r ∈ (0, 1] (11)

we have

xv(r) < 1

if

rk+2 − 2rk+1 − rk − r2 − 2r + 1 < 0, r ∈ (0, 1].

Now, we show that the polynomial

q(r) = rk+2 − 2rk+1 − rk − r2 − 2r + 1

has exactly one root in the interval (0, 1). Finally, it is sufficient to note that

q(0)q(1) < 0

and for r ∈ [0, 1)

q′(r) = (k + 2)rk+1 − 2(k + 1)rk − krk−1 − 2r − 2

= krk−1(r2 − 1) + 2r(rk − 1) − 2(k + 1)rk − 2 < 0.

Therefore in the interval (0, 1) the function q(r) has exactly one root rk.
For xv given by (11) we have

yv =
(1 − rk)2(1 − r2)2 + 4r2(1 + rk)2

4r(1 − r2)(1 − r2k)
for r ∈ [rk, 1].

Hence we obtain (8).
In order to prove the second part of the theorem, let us assume that

r ∈ [rk, 1), the point
◦
z∈ G, μG(

◦
z) = r and the function f is of the form

f(z) = ω(z)F (z),
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where

F (z) =
1

[1 + Ik(z)]
2
k

∈ MG ∩ F0,k,

Ik(z) means the product of k identical factors I(z) (see [2]) and

ω(z) =
α + I(z)
1 + αI(z)

, z ∈ G,

α =
(1 − rk)(1 − r2) − 2r2(1 + rk)
r[2(1 + rk) − (1 − rk)(1 − r2)]

.

We set the α parameter from the condition

α + I(z)
1 + αI(z)

=
(1 − rk)(1 − r2)

2r(1 + rk)
, z = (r, 0, . . . , 0), α ∈ (0, 1).

Thus F ∈ MG ∩ F0,k, f is majorized by F in G and for the point
◦
z we

have equality in (7). However, by putting f = F for r ∈ [0, rk], where F ∈
MG ∩ F0,k, we have Lf = LF and equality in (7) holds for points z ∈ G such
that μG(z) = r ∈ [0, rk]. This completes the proof. �

Corollary 1. Let n ≥ 2 and G be a bounded complete n-circular domain of
C

n. If a function F ∈ MG ∩ F0,k majorizes a function f ∈ HG in G, then
the function LF majorizes the function Lf in the domain rkG, where rk is
the unique solution in (0, 1) of the equation (9). The constant rk cannot be
replaced by any greater number r.
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