Skip to main content
Log in

Upper Bounds on the First Eigenvalue for a Diffusion Operator via Bakry–Émery Ricci Curvature II

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

Let \({L=\Delta-\nabla\varphi\cdot\nabla}\) be a symmetric diffusion operator with an invariant measure \({d\mu=e^{-\varphi}dx}\) on a complete Riemannian manifold. In this paper we prove Li–Yau gradient estimates for weighted elliptic equations on the complete manifold with \({|\nabla \varphi| \leq \theta}\) and ∞-dimensional Bakry–Émery Ricci curvature bounded below by some negative constant. Based on this, we give an upper bound on the first eigenvalue of the diffusion operator L on this kind manifold, and thereby generalize a Cheng’s result on the Laplacian case (Math Z, 143:289–297, 1975).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bakry, D., Emery, M.: Diffusion hypercontractivitives. In: Séminaire de Probabilités XIX, 1983/1984, Lecture Notes in Mathematics, vol. 1123, pp. 177–206. Springer, Berlin (1985)

  2. Bakry D., Qian Z.-M.: Some new results on eigenvectors via dimension, diameter and Ricci curvature. Adv. Math. 155, 98–153 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bakry, D., Qian, Z.-M.: Volume comparison theorems without Jacobi fields. Current trends in potential theory. In: Theta Ser. Adv. Math., vol. 4, pp. 115–122. Theta, Bucharest (2005)

  4. Calabi E.: An extension of E. Hopfs maximum principle with application to Riemannian geometry. Duke Math. J. 25, 45–56 (1957)

    Article  MathSciNet  Google Scholar 

  5. Cao H.-D.: Geometry of Ricci solitons. Chin. Ann. Math. 27, 121–142 (2006)

    Article  MATH  Google Scholar 

  6. Cao, H.-D.: Recent progress on Ricci solitons. Recent advances in geometric analysis. In: Advanced Lectures in Mathematics (ALM), vol. 11, pp. 1–38. International Press, Somerville (2010)

  7. Cao, H.-D.: Geometry of complete gradient shrinking Ricci solitons. In: Geometry and Analysis (Vol. I), Advanced Lectures in Mathematics (ALM), vol. 17, pp. 227–246. International Press, Somerville (2011)

  8. Chen B.-L.: Strong uniqueness of the Ricci flow. J. Diff. Geom. 82, 362–382 (2009)

    Google Scholar 

  9. Cheng S.-Y.: Eigenvalue comparison theorems and its geometric applications. Math. Z. 143, 289–297 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cheng S.-Y., Yau S.-T.: Differential equations on Riemannian manifolds and their geometric applications. Commun. Pure Appl. Math. 28, 333–354 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fang F.-Q., Li X.-D., Zhang Z.-L.: Two generalizations of Cheeger–Gromoll splitting theorem via Bakry–Émery Ricci curvature. Annales de l’Institut Fourier 59, 563–573 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fernández-López M., García-Ríio E.: A remark on compact Ricci solitons. Math. Ann. 340, 893–896 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Futaki, A., Li, H.-Z., Li, X.-D.: On the first eigenvalue of the Witten–Laplacian and the diameter of compact shrinking Ricci solitons, arXiv: math.DG/1111.6364v4 (2011)

  14. Hamilton, R.S.: The formation of singularities in the Ricci flow, Surveys in Differential Geometry (Cambridge, MA, 1993), vol. 2, pp. 7–136. International Press, Combridge (1995)

  15. Li, P.: Harmonic functions and applications to complete manifolds. http://math.uci.edu/~pli/, preprint (2004)

  16. Li P., Yau S.-T.: Estimates of eigenvalues of a compact Riemannian manifold. Proc. Sympos. Pure Math. 36, 205–239 (1980)

    Article  MathSciNet  Google Scholar 

  17. Li P., Yau S.-T.: On the parabolic kernel of the Schrodinger operator. Acta Math. 156, 153–201 (1986)

    Article  MathSciNet  Google Scholar 

  18. Li X.-D.: Liouville theorems for symmetric diffusion operators on complete Riemannian manifolds. J. Math. Pure. Appl. 84, 1295–1361 (2005)

    MATH  Google Scholar 

  19. Lott J.: Some geometric properties of the Bakry–Émery-Ricci tensor. Comment. Math. Helv. 78, 865–883 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lott J., Villani C.: Ricci curvature for metric-measure spaces via optimal transport. Ann. Math. 169, 903–991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Munteanu O., Wang J.: Smooth metric measure spaces with nonnegative curvature. Commun. Anal. Geom. 19, 451–486 (2011)

    MathSciNet  MATH  Google Scholar 

  22. Munteanu O., Wang J.: Analysis of weighted Laplacian and applications to Ricci solitons. Commun. Anal. Geom. 20, 55–94 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications, arXiv: math.DG/0211159v1 (2002)

  24. Pigoli S., Rimoldi M., Setti A.: Remarks on noncompact non-compact gradient Ricci solitons. Math. Z. 268, 777–790 (2011)

    Article  MathSciNet  Google Scholar 

  25. Sturm K.-T.: On the geometry of metric measure spaces. I. Acta Math 196, 65–131 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sturm K.-T.: On the geometry of metric measure spaces. II. Acta Math. 196, 133–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Su Y., Zhang H.: Rigidity of manifolds with Bakry–Émery Ricci curvature bounded below. Geom. Dedicata. doi:10.1007/s10711-011-9685-x

  28. Wei, G.-F., Wylie, W.: Comparison geometry for the smooth metric measure spaces. In: Proceedings of the 4th International Congress of Chinese Mathematicians, vol II, pp. 191–202. Hangzhou, China (2007)

  29. Wei G.-F., Wylie W.: Comparison geometry for the Bakry–Émery Ricci tensor. J. Diff. Geom. 83, 377–405 (2009)

    MathSciNet  MATH  Google Scholar 

  30. Wu J.-Y.: Upper bounds on the first eigenvalue for a diffusion operator via Bakry–Émery Ricci curvature. J. Math. Anal. Appl. 361, 10–18 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wu, J.-Y.: Splitting theorems on complete manifolds with Bakry–Émery curvature, arXiv: math.DG/1112.6302v1 (2011)

  32. Wylie W.: Complete shrinking Ricci solitons have finite fundamental group. Proc. Am. Math. Soc. 136, 1803–1806 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Yau S.-T.: Harmonic functions on complete Riemannian manifolds. Commun. Pure Appl. Math. 28, 201–228 (1975)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jia-Yong Wu.

Additional information

This work is partially supported by the NSFC (No. 11101267) and the Science and Technology Program of Shanghai Maritime University (No. 20120061).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, JY. Upper Bounds on the First Eigenvalue for a Diffusion Operator via Bakry–Émery Ricci Curvature II. Results. Math. 63, 1079–1094 (2013). https://doi.org/10.1007/s00025-012-0254-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-012-0254-x

Mathematics Subject Classification

Keywords

Navigation