Skip to main content
Log in

Contribution of Solar Irradiance Variations to Surface Air Temperature Trends at Different Latitudes Estimated from Long-term Data

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Contributions of the insolation variations together with different natural and anthropogenic factors to the trends of the surface air temperatures at different latitudes of the Northern and Southern Hemispheres on various temporal horizons are estimated from climate data since the nineteenth century with the use of empirical autoregressive models. As the natural climate variability modes, we take into account Atlantic Multidecadal Oscillation, El-Nino/Southern Oscillation, Interdecadal Pacific Oscillation, Pacific Decadal Oscillation, and Antarctic Oscillation. According to the obtained results, the contributions of the insolation variations to the trends of the surface air temperature are statistically insignificant on the time intervals under study, i.e. from a decade and longer. Taking into account the insolation variations in the autoregressive models weakly alters the estimates of the contributions of the greenhouse gases and natural variability modes to the temperature trends: the changes are not more than several per cent. Numerically, the estimated contributions of the insolation variations can considerably exceed the respective contributions of the natural variability modes both on short (less than two decades) and long (longer than a century) time intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability statement

The data used for the analysis are available at (GISS, 2018; Huang et al., 2015; NCEI, 2022; PSL, 2022).

References

  • Allen, M. R., Gillett, N. P., Kettleborough, J. A., Hegerl, G., Schnur, R., Stott, P. A., Boer, G., Covey, C., Delworth, T. L., Jones, G. S., & Mitchell, J. F. (2006). Quantifying anthropogenic influence on recent near-surface temperature change. Surveys in Geophysics, 27, 491–544.

    Article  Google Scholar 

  • Allen, M. R., & Stott, P. A. (2003). Estimating signal amplitudes in optimal fingerprinting, part I: Theory. Climate Dynamics, 21, 477–491.

    Article  Google Scholar 

  • Allen, M. R., & Tett, S. F. B. (1999). Checking for model consistency in optimal fingerprinting. Climate Dynamics, 15, 419–434.

    Article  Google Scholar 

  • Anet, J. G., Rozanov, E. V., Muthers, S., Peter, T., Brönnimann, S., Arfeuille, F., Beer, J., Shapiro, A. I., Raible, C. C., Steinhilber, F., & Schmutz, W. K. (2013). Impact of a potential 21st century “grand solar minimum” on surface temperatures and stratospheric ozone. Geophysical Research Letters, 40, 4420–4425.

    Article  Google Scholar 

  • Arsenovic, P., Rozanov, E., Anet, J., Stenke, A., Schmutz, W., & Peter, T. (2018). Implications of potential future grand solar minimum for ozone layer and climate. Atmospheric and Chemical Physics, 18, 3469–3483.

    Article  Google Scholar 

  • Attanasio, A., & Triacca, U. (2011). Detecting human influence on climate using neural networks based Granger causality. Theoretical and Applied Climatology, 103(1–2), 103–107.

    Article  Google Scholar 

  • Bindoff, N. L., Stott, P. A., AchutaRao, K. M., Allen, M. R., Gillett, N., Gutzler, D., Hansingo, K., Hegerl, G., Hu, Y., Jain, S., II., Overland, M. J., Perlwitz, J., Sebbari, R., & Zhang, X. (2013). In: Climate Change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change (pp. 867–952). Cambridge University Press.

    Google Scholar 

  • Enfield, D. B., Mestas-Nunez, A. M., & Trimble, P. J. (2001). The Atlantic Multidecadal Oscillation and its relationship to rainfall and river flows in the continental U.S. Geophysical Research Letters, 28, 2077–2080.

    Article  Google Scholar 

  • Feulner, G., & Rahmstorf, S. (2010). On the effect of a new grand minimum of solar activity on the future climate on Earth. Geophysical Research Letters, 37(5), L05707.

    Article  Google Scholar 

  • Foster, G., & Rahmstorf, S. (2011). Global temperature evolution 1979–2010. Environmental Research Letters, 6, 044022.

    Article  Google Scholar 

  • GISS, (2018). Forcings in climate models. national aeronautics and space administration, goddard institute for space studies. (https://data.giss.nasa.gov/modelforce/Miller_et_2014/Fi_Miller_et_al14_upd.txt).

  • Gong, D., & Wang, S. (1999). Definition of Antarctic oscillation index. Geophysical Research Letters, 26(4), 459–462.

    Article  Google Scholar 

  • Granger, C. W. J. (1963). Economic processes involving feedback. Information and Control, 6, 28.

    Article  Google Scholar 

  • Granger, C. W. J. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37(3), 424–438.

    Article  Google Scholar 

  • Gruza, G. V., & Rankova, E. Y. A. (2012). Observed and expected climate changes over Russia: Surface and temperature. RIHMI-WDC. (in Russian).

    Google Scholar 

  • Hasselmann, K. (1993). Optimal fingerprints for the detection of time-dependent climate change. Journal of Climate, 6, 1957–1971.

    Article  Google Scholar 

  • Hasselmann, K. (1997). Multi-pattern fingerprint method for detection and attribution of climate change. Climate Dynamics, 13, 601–611.

    Article  Google Scholar 

  • Hegerl, G. C., von Storch, H., Hasselmann, K., Santer, B. D., Cubasch, U., & Jones, P. D. (1996). Detecting greenhouse-gas-induced climate change with an optimal fingerprint method. Journal of Climate, 9, 2281–2306.

    Article  Google Scholar 

  • Hegerl, G. C., & Zwiers, F. (2011). Use of models in detection and attribution of climate change. Wires Climate Change, 2, 570–591.

    Article  Google Scholar 

  • Henley, B. J., Gergis, J., Karoly, D. J., Power, S. B., Kennedy, J., & Folland, C. K. (2015). A tripole index for the interdecadal pacific oscillation. Climate Dynamics, 45(11–12), 3077–3090.

    Article  Google Scholar 

  • Huang, B., Banzon, V. F., Freeman, E., Lawrimore, J., Liu, W., Peterson, T. C., Smith, T. M., Thorne, P. W., Woodruff, S. D., & Zhang, H.-M. (2014). Extended reconstructed sea surface temperature version 4 (ERSST.v4): Part I. Upgrades and intercomparisons. Journal of Climate, 28, 911–930.

    Article  Google Scholar 

  • Huang, B., Banzon, V.F., Freeman, E., Lawrimore, J., Liu, W., Peterson, T.C., Smith, T.M., Thorne, P.W., Woodruff, S.D., and Zhang, H.-M. (2015). Extended reconstructed sea surface temperature (ERSST), Version 4. NOAA National Centers for Environmental Information. https://doi.org/10.7289/V5KD1VVF (ftp://ftp.ncdc.noaa.gov/pub/data/noaaglobaltemp/operational/timeseries/).

  • Huntingford, C., Stott, P. A., Allen, M. R., & Lambert, F. H. (2006). Incorporating model uncertainty into attribution of observed temperature change. Geophysical Research Letters, 33, L05710.

    Article  Google Scholar 

  • Imbers, J., Lopez, A., Huntingford, C., & Allen, M. R. (2013). Testing the robustness of the anthropogenic climate change detection statements using different empirical models. Journal of Geophysical Research Atmospheres, 118, 3192–3199.

    Article  Google Scholar 

  • Imbers, J., Lopez, A., Huntingford, C., & Allen, M. R. (2014). Sensitivity of climate change detection and attribution to the characterization of internal climate variability. Journal of Climate, 27, 3477–3491.

    Article  Google Scholar 

  • Jia, L., & DelSole, T. (2012). Optimal determination of time-varying climate change signals. Journal of Climate, 25, 7122–7137.

    Article  Google Scholar 

  • Jones, G. S., Lockwood, M., & Stott, P. A. (2012). What influence will future solar activity changes over the 21st century have on projected global near-surface temperature changes? Journal of Geophysical Research, 117, D05103. https://doi.org/10.1029/2011JD017013

    Article  Google Scholar 

  • Kajtar, J. B., Collins, M., Frankcombe, L. M., England, M. H., Osborn, T. J., & Juniper, M. (2019). Global mean surface temperature response to large-scale patterns of variability in observations and CMIP5. Geophysical Research Letters, 46, 2232–2241.

    Article  Google Scholar 

  • Kaufmann, R., Kauppi, H., Mann, M., & Stock, J. (2011). Reconciling anthropogenic climate change with observed temperature 1998–2008. Proceedings of the National Academy of Sciences, 108, 11790–11793.

    Article  Google Scholar 

  • Kaufmann, R., Kauppi, H., & Stock, J. (2006). Emissions, concentrations, & temperature: A time series analysis. Climatic Change, 77, 249–278.

    Article  Google Scholar 

  • Kaufmann, R. K., & Stern, D. I. (1997). Evidence for human influence on climate from hemispheric temperature relations. Nature, 388, 39–44.

    Article  Google Scholar 

  • Kodra, E., Chatterjee, S., & Ganguly, A. R. (2011). Exploring Granger causality between global average observed time series of carbon dioxide and temperature. Theoretical and Applied Climatology, 104(3–4), 325–335.

    Article  Google Scholar 

  • Kopp, G., & Lean, J. (2011). A new, lower value of total solar irradiance: Evidence and climate significance. Geophysical Research Letters, 38, L01706.

    Article  Google Scholar 

  • Lean, J. L., & Rind, D. H. (2008). How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006. Geophysical Research Letters, 35, L18701.

    Article  Google Scholar 

  • Lean, J. L., & Rind, D. H. (2009). How will Earth’s surface temperature change in future decades? Geophysical Research Letters, 36, L15708.

    Article  Google Scholar 

  • Liu, W., Huang, B., Thorne, P. W., Banzon, V. F., Zhang, H. M., Freeman, E., Lawrimore, J., Peterson, T. C., Smith, T. M., & Woodruff, S. D. (2014). Extended reconstructed Sea surface temperature version 4 (ERSST.v4): Part II. Parametric and structural uncertainty estimations. Journal of Climate, 28, 931–951.

    Article  Google Scholar 

  • Lockwood, M. (2008). Recent changes in solar outputs and the global mean surface temperature. III. Analysis of contributions to global mean air surface temperature rise. Proceedings of the Royal Society A Mathematical Physical and Engineering Sciences, 464(2094), 1387–1404.

    Article  Google Scholar 

  • Loehle, C., & Scafetta, N. (2011). Climate change attribution using empirical decomposition of climatic data. Open Atmospheric Science Journal, 5, 74–86.

    Article  Google Scholar 

  • Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., & Zhou B. (eds.) (2021). Climate Change 2021: the physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press.

    Google Scholar 

  • Maycock, A. C., Ineson, S., Gray, L. J., Scaife, A. A., Anstey, J. A., Lockwood, M., Butchart, N., Hardiman, S. C., Mitchell, D. M., & Osprey, S. M. (2015). Possible impacts of a future grand solar minimum on climate: Stratospheric and global circulation changes. Journal of Geophysical Research Atmospheres. https://doi.org/10.1002/2014JD022022

    Article  Google Scholar 

  • McBride, L. A., Hope, A. P., Canty, T. P., Bennett, B. F., Tribett, W. R., & Salawitch, R. J. (2021). Comparison of CMIP6 historical climate simulations and future projected warming to an empirical model of global climate. Earth System Dynamics, 12, 545–579.

    Article  Google Scholar 

  • Meehl, G. A., Arblaster, J. M., & Marsh, D. R. (2013). Could a future “grand Solar Minimum” like Maunder Minimum stop global warming? Geophysical Research Letters, 40(1789), 1793.

    Google Scholar 

  • Miller, R. L., Schmidt, G. A., Nazarenko, L. S., Tausnev, N., Bauer, S. E., DelGenio, A. D., Kelley, M., Lo, K. K., Ruedy, R., Shindell, D. T., & Aleinov, I. (2014). CMIP5 historical simulations (1850–2012) with GISS ModelE2. Journal of Advances in Modeling Earth Systems, 6(2), 441–477.

    Article  Google Scholar 

  • Mokhov, I. I., Bezverkhnii, V. A., Eliseev, A. V., & Karpenko, A. A. (2006). Model estimations of global climate changes in the 21st century with account for different variation scenarios of solar activity. Doklady Earth Sciences, 411(8), 1327–1330.

    Article  Google Scholar 

  • Mokhov, I. I., Bezverkhnii, V. A., Eliseev, A. V., & Karpenko, A. A. (2008). Model estimations of possible climatic changes in 21st century at different scenarios of solar and volcanic activities and anthropogenic impact. Cosmic Research, 46(4), 354–357.

    Article  Google Scholar 

  • Mokhov, I. I., & Smirnov, D. A. (2008). Diagnostics of a cause–effect relation between solar activity and the Earth’s global surface temperature. Izvestiya, Atmospheric and Oceanic Physics, 44(3), 263–272.

    Article  Google Scholar 

  • Mokhov, I. I., & Smirnov, D. A. (2009). Empirical estimates of the influence of natural and anthropogenic factors on the global surface temperature. Doklady Earth Sciences, 427(1), 798–803.

    Article  Google Scholar 

  • Mokhov, I. I., & Smirnov, D. A. (2016). Relation between the variations in the global surface temperature, El Nino/La Nina phenomena, and the Atlantic Multidecadal Oscillation. Doklady Earth Sciences, 467(2), 384–388.

    Article  Google Scholar 

  • Mokhov, I. I., & Smirnov, D. A. (2016). The Trivariate Seasonal Analysis of Couplings between El Nino, North Atlantic Oscillation, and Indian Monsoon. Russian Meteorology and Hydrology, 41(11–12), 798–807.

    Article  Google Scholar 

  • Mokhov, I. I., & Smirnov, D. A. (2017). Estimates of mutual influences between sea surface temperature variations in tropical Pacific, Atlantic, and Indian oceans from long-period data series. Izvestiya, Atmospheric and Oceanic Physics, 53(6), 613–623.

    Article  Google Scholar 

  • Mokhov, I. I., & Smirnov, D. A. (2018). Estimating the contributions of the Atlantic Multidecadal Oscillation and variations in the atmospheric concentration of greenhouse gases to surface air temperature trends from observations. Doklady Earth Sciences, 480(1), 602–606.

    Article  Google Scholar 

  • Mokhov, I. I., & Smirnov, D. A. (2018). Contribution of greenhouse gas radiative forcingand Atlantic Multidecadal Oscillation to surface air temperature trends. Russian Meteorology and Hydrology, 43(9), 557–564.

    Article  Google Scholar 

  • Mokhov, I. I., & Smirnov, D. A. (2022). Contributions to surface air temperature trends estimated from climate time series: Medium-term causalities. Chaos, 32, 063128. https://doi.org/10.1063/5.0088042

    Article  Google Scholar 

  • Mokhov, I. I., Smirnov, D. A., & Karpenko, A. A. (2012). Assessments of the relationship of changes of the global surface air temperature with different natural and anthropogenic factors based on observations. Doklady Earth Sciences, 443(1), 381–387.

    Article  Google Scholar 

  • Mokhov, I. I., Smirnov, D. A., Nakonechny, P. I., Kozlenko, S. S., Seleznev, E. P., & Kurths, J. (2011). Alternating mutual influence of El-Nino/Southern Oscillation and Indian monsoon. Geophysical Research Letters. https://doi.org/10.1029/2010GL045932

    Article  Google Scholar 

  • Mukhin, D., Gavrilov, A., Seleznev, A., & Buyanova, M. (2021). An atmospheric signal lowering the spring predictability barrier in statistical ENSO forecasts. Geophysical Research Letters, 48(6), e2020GL091287. https://doi.org/10.1029/2020GL091287

    Article  Google Scholar 

  • NCEI. (2022). National Oceanic and Atmospheric Administration, National Centers for Environmental Information. (https://www.ncei.noaa.gov/pub/data/cmb/ersst/v5/index/ersst.v5.pdo.dat).

  • PSL, (2022). National Oceanic and Atmospheric Administration, Physical Sciences Laboratory. (AMO:http://www.esrl.noaa.gov/psd/data/correlation//amon.us.long.data; ENSO:https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/nino34.long.anom.data; IPO:https://psl.noaa.gov/data/timeseries/IPOTPI/tpi.timeseries.hadisst1.1.data; AAO:https://psl.noaa.gov/data/20thC_Rean/timeseries/monthly/SAM/sam.20crv2.long.data).

  • Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L. V., Rowell, D. P., Kent, E. C., & Kaplan, A. (2003). Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research, 108(D14), 4407.

    Article  Google Scholar 

  • Ribes, A., Azais, J.-M., & Planton, S. (2009). Adaptation of the optimal fingerprint method for climate change detection using a well-conditioned covariance matrix estimate. Climate Dynamics, 33, 707–722.

    Article  Google Scholar 

  • Ribes, A., & Terray, L. (2013). Application of regularised optimal fingerprinting to attribution. Part II: Application to global near-surface temperature. Climate Dynamics, 41, 2837–2853.

    Article  Google Scholar 

  • Santer, B. D., Wigley, T. M., Doutriaux, C., Boyle, J. S., Hansen, J. E., Jones, P. D., Meehl, G. A., Roeckner, E., Sengupta, S., & Taylor, K. E. (2001). Accounting for the effects of volcanoes and ENSO in comparisons of modeled and observed temperature trends. Journal of Geophysical Research, 106(D22), 28033–28059.

    Article  Google Scholar 

  • Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461–464.

    Article  Google Scholar 

  • Seleznev, A., Mukhin, D., Gavrilov, A., Loskutov, E., & Feigin, A. (2019). Bayesian framework for simulation of dynamical systems from multidimensional data using recurrent neural network. Chaos, 29(12), 123115.

    Article  Google Scholar 

  • Smirnov, D. A. (2014). Quantifying causal couplings via dynamical effects: A unifying perspective. Physical Review E, 90(6), 062921.

    Article  Google Scholar 

  • Smirnov, D. A. (2022). Generative formalism of causality quantifiers for processes. Physical Review E, 105(3), 034209.

    Article  Google Scholar 

  • Smirnov, D. A., & Mokhov, I. I. (2009). From Granger causality to “long-term causality”: Application to climatic data. Physical Review E, 80(1), 016208.

    Article  Google Scholar 

  • Smirnov, D. A., & Mokhov, I. I. (2015). Relating Granger causality to long-term causal effects. Physical Review E, 92(4), 042138.

    Article  Google Scholar 

  • Song, X., Lubin, D., & Zhang, G. J. (2010). Increased greenhouse gases enhance regional climate response to a Maunder Minimum. Geophysical Research Letters, 37, L01703. https://doi.org/10.1029/2009GL041290

    Article  Google Scholar 

  • Stern, D. I., & Kaufmann, R. K. (2014). Anthropogenic and natural causes of climate change. Climatic Change, 122, 257–269.

    Article  Google Scholar 

  • Stips, A., Macias, D., Coughlan, C., Garcia-Gorriz, E., & San Liang, X. (2016). On the causal structure between CO2 and global temperature. Scientific Reports, 6, 21691.

    Article  Google Scholar 

  • Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., & Midgley, P. M. (Eds.) (2013). Climate Change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press.

    Google Scholar 

  • Stolpe, M. B., Medhaug, I., & Knutti, R. (2017). Contribution of Atlantic and Pacific multidecadal variability to twentieth-century temperature changes. Journal of Climate, 30, 6279–6295.

    Article  Google Scholar 

  • Tol, R. S. J., & de Vos, A. F. (1993). Greenhouse statistics–time series analysis. Theoretical and Applied Climatology, 48, 63–74.

    Article  Google Scholar 

  • Triacca, U., Attanasio, A., & Pasini, A. (2013). Anthropogenic global warming hypothesis: Testing its robustness by Granger causality analysis. Environmetrics, 24, 260–268.

    Article  Google Scholar 

  • Tung, K. K., & Camp, C. D. (2008). Solar cycle warming at the Earth’s surface in NCEP and ERA-40 data: A linear discriminant analysis. Journal of Geophysical Research, 113, D05114.

    Article  Google Scholar 

  • Verdes, P. F. (2007). Global warming is driven by anthropogenic emissions: A time series analysis approach. Physical Review Letters, 99, 048501.

    Article  Google Scholar 

  • Zhou, J., & Tung, K. K. (2013). Deducing multidecadal anthropogenic global warming trends using multiple regression analysis. Journal of the Atmospheric Sciences, 70, 3–8.

    Article  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation project No. 19–17-00240. The results obtained within the framework of the RSF-NSFC project 23-47-00104 were also used

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the study design and data analysis. Both authors wrote the main manuscript text, reviewed the manuscript and approved the final manuscript.

Corresponding author

Correspondence to Dmitry A. Smirnov.

Ethics declarations

Conflict of interest

The authors declare they have no financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhov, I.I., Smirnov, D.A. Contribution of Solar Irradiance Variations to Surface Air Temperature Trends at Different Latitudes Estimated from Long-term Data. Pure Appl. Geophys. 180, 3053–3070 (2023). https://doi.org/10.1007/s00024-023-03317-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-023-03317-8

Keywords

Navigation