Skip to main content
Log in

The Moho Relief Beneath the Zagros Collision Zone Through Modeling of Ground-Based Gravity Data and Utilizing Open-Source Resources in Python

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Seismic Moho depth is defined based on a significant seismic velocity change between the crust and the upper mantle. Receiver function studies provide the most reliable estimates of the Moho depth. However, they are limited to some profile strikes to the Zagros collision zone. Here, we present an automated inverse methodology to provide a 3D Moho relief beneath the Zagros collision zone. We use gravity data in a vast square to compute the Moho depth model to refine an initial Moho depth model obtained from shear wave tomography. The depths, estimated by long wavelength shear wave tomography initially derived for the entire Middle East, are considered for the initial depth model. This initial model is refined by using a very popular and robust method for nonlinear inversion accessible through open-source resources in Python. Our modeling results indicate that only a 100 kg/m3 density contrast between the crust and the upper mantle is sufficient to provide the Moho depth values comparable to receiver functions. This is interpreted as the high density and mafic affinity of the lower crust beneath the Zagros collision zone. It appears the lower crust returns to eclogite in the deep part. Alternatively, the cratonic core of the Zagros keel has a small density leading to only a 100 kg/m3 density contrast between the lower crust and the uppermost lithospheric mantle. The depths obtained by our inversion methodology are compared and assessed to other studies in the area of Moho relief modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No new data were generated or analyzed in support of this research.

References

  • Alavi, M. J. T. (1994). Tectonics of the Zagros orogenic belt of Iran: New data and interpretations. Tectonophysics, 229(3–4), 211–238.

    Article  Google Scholar 

  • Amante, C., & Eakins, B.W. (2009). ETOPO1 arc-minute global relief model: procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24, 19 pp.

  • Berberian, M. (1995). Master “blind” thrust faults hidden under the Zagros folds: Active basement tectonics and surface morphotectonics. Tectonophysics, 241(3–4), 193–224.

    Article  Google Scholar 

  • Berberian, M., & King, G. C. P. (1981). Towards a paleogeography and tectonic evolution of Iran. Canadian Journal of Earth Science, 18, 210–265. https://doi.org/10.1139/e81-019

    Article  Google Scholar 

  • Bott, M. H. P. (1960). The use of rapid digital computing methods for direct gravity interpretation of sedimentary basins. Geophysical Journal International. https://doi.org/10.1111/j.1365-246X.1960.tb00065.x

    Article  Google Scholar 

  • Cordell, L., & Henderson, R. G. (1968). Iterative three-dimensional solution of gravity anomaly data using a digital computer. Geophysics, 33(4), 596–601. https://doi.org/10.1190/1.1439955

    Article  Google Scholar 

  • Cui, Y. .-A., Zhang, L., Zhu, X., Liu, J., & Guo, Z. (2020). Inversion for magnetotelluric data using the particle swarm optimization and regularized least squares. Journal of Applied Geophysics, 181, 104156. https://doi.org/10.1016/j.jappgeo.2020.104156

    Article  Google Scholar 

  • Dehghan, M. J., Ardestani, V. E., & Dehghani, A. (2021). Moho topography estimation using interactive forward modeling of gravity data. Journal of Earth and space physics, 47(2), 225–39.

    Google Scholar 

  • Dehghani, G.A., & Makris, J. (1983). The gravity field and crustal structure of Iran, In: Geodynamics project (traverse) in Iran. Geological Survey of Iran, Rep. No. 51, 51–68.

  • Ebadi, S., Barzaghi, R., Safari, A., & Bahroudi, A. (2019). Evaluation of different gravimetric methods to Moho recovery in Iran. Annals of Geophysics. https://doi.org/10.4401/ag-8054

    Article  Google Scholar 

  • Eshagh, M. (2014). Integral developments of Vening Meinesz-Moritz formula for local determination of Moho discontinuity and their applications in Iran. Geodynamics Research International Bulletin, 2(3), I–IX.

    Google Scholar 

  • Fedi, M., Florio, G., & Cascone, L. (2012). Multiscale analysis of potential fields by a ridge consistency criterion: The reconstruction of the Bishop basement. Geophysical Journal International, 188(1), 103–114. https://doi.org/10.1111/j.1365-246X.2011.05259.x

    Article  Google Scholar 

  • Feng, X., Wang, W., & Yuan, B. (2018). 3D gravity inversion of basement relief for a rift basin based on combined multinorm and normalized vertical derivative of the total horizontal derivative techniques. Geophysics, 83(5), G107–G118. https://doi.org/10.1190/geo2017-0678.1

    Article  Google Scholar 

  • Florio, G. (2020). The estimation of depth to basement under sedimentary basins from gravity data: Review of approaches and the ITRESC method, with an application to the Yucca Flat Basin (Nevada). Surveys in Geophysics, 41, 935–961. https://doi.org/10.1007/s10712-020-09601-9

    Article  Google Scholar 

  • Heydarizadeh Shali, H., Sampietro, D., Safari, A., Capponi, M., & Bahroudi, A. (2020). Fast collocation for Moho estimation from GOCE gravity data: The Iran case study. Geophysical Journal International, 221(1), 651–664.

    Article  Google Scholar 

  • Ho, T., Priestley, K., & Debayle, E. (2016). A global horizontal shear velocity model of the upper mantle from multimode Love wave measurements. Geophysical Journal International, 207, 542–561. https://doi.org/10.1093/gji/ggw292

    Article  Google Scholar 

  • Javan-Doloei, G. (2002). Teleseismic P-wave receiver functions and its application on the crust and uppermost Mantle structure estimation. Research Bulletin of Seismology and Earthquake Engineering, 4(4), 21–28.

    Google Scholar 

  • Jegen, M. D., Hobbs, R. W., Tarits, P., & Chave, A. (2009). Joint inversion of marine magnetotelluric and gravity data incorporating seismic constraints: Preliminary results of sub-basalt imaging off the Faroe Shelf. Earth and Planetary Science Letters, 282(1–4), 47–55. https://doi.org/10.1016/j.epsl.2009.02.018

    Article  Google Scholar 

  • Kaviani, A., Paul, A., Moradi, A., Mai, P. M., Pilia, S., Boschi, L., Rümpker, G., Lu, Y., Tang, Z., & Sandvol, E. (2020). Crustal and uppermost mantle shear-wave velocity structure beneath the Middle East from surface-wave tomography. Geophysical Journal International. https://doi.org/10.1093/gji/ggaa075

    Article  Google Scholar 

  • Levenberg, K. (1944). A method for the solution of certain non-linear problems in least squares. Quarterly of Applied Mathematics., 2(2), 164–168.

    Article  Google Scholar 

  • Li, Y., & Oldenberg, D. W. (1996). 3-D inversion of magnetic data. Geophysics, 61, 394–408.

    Article  Google Scholar 

  • Marquardt, D. (1963). An algorithm for least-squares estimation of nonlinear parameters. SIAM Journal on Applied Mathematics., 11(2), 431–441.

    Article  Google Scholar 

  • Martins, C. M., Lima, W. A., Barbosa, V. C. F., & Silva, J. B. C. (2011). Total variation regularization for depth-to basement estimate: Part 1—mathematical details and applications. Geophysics. https://doi.org/10.1190/1.3524286

    Article  Google Scholar 

  • Molinaro, M., Zeyen, H., & Laurencin, X. (2005). Lithospheric structure beneath the south-eastern Zagros Mountains, Iran: Recent slab break-off? Terra Nova, 17, 1–6. https://doi.org/10.1111/j.1365-3121.2004.00575.x

    Article  Google Scholar 

  • More, J. J. (1977). The Levenberg-Marquardt algorithm: Implementation and theory. In G. A. Watson (Ed.), Numerical analysis, lecture notes in mathematics 630 (pp. 105–116). Springer Verlag.

    Google Scholar 

  • Motaghi, K., Tatar, M., Priestley, K., Romanelli, F., Doglioni, C., & Panza, G. F. (2015). The deep structure of the Iranian Plateau. Gondwana Research, 28(1), 407–418.

    Article  Google Scholar 

  • Motavalli, S. H., Zeyen, H., Brunet, M. F., & Ardestani, V. E. (2011). Crustal and lithospheric structure of the Alborz Mountains, Iran, and surrounding areas from integrated geophysical modeling. Tectonics. https://doi.org/10.1029/2011TC002934

    Article  Google Scholar 

  • Mousavi, N., & Ebbing, J. (2018). Basement characterization and crustal structure beneath the Arabia-Eurasia collision (Iran): A combined gravity and magnetic study. Tectonophysics, 731–732, 155–171.

    Article  Google Scholar 

  • Mousavi, N., & Fullea, J. (2020). 3D thermochemical structure of lithospheric mantle beneath the Iranian plateau and surrounding areas from geophysical-petrological modeling. Geophysical Journal International, 222(2), 1295–1315. https://doi.org/10.1093/gji/ggaa262

    Article  Google Scholar 

  • Mousavi, N., Fullea, J., Shafaii Moghadam, H., & Griffin, W. L. (2023). Mantle compositional structure and dynamics of the Arabia-Eurasia collision zone: Insights from integrated thermochemical modeling. Gondwana Research (in revision)

  • Oldenburg, D. W. (1974). The Inversion and Interpretation of gravity anomalies. Geophysics, 39(4), 526–536.

    Article  Google Scholar 

  • Parker, R. (1972). The rapid calculation of potential anomalies. Geophysical Journal, 31(4), 447–455.

    Article  Google Scholar 

  • Paul, A., Hatzfeld, D., Kaviani, A., Tatar, M., & Pequegnat, C. (2010). Seismic imaging of the lithospheric structure of the Zagros mountain belt (Iran). Geological Society, London, Special Publications, 330(1), 5–18.

    Article  Google Scholar 

  • Paul, A., Kaviani, A., Hatzfeld, D., Vergne, J., & Mokhtari, M. (2006). Seismological evidence for crustal- 26 scale thrusting in the Zagros mountain belt (Iran). Geophysical Journal International, 166, 227–237. https://doi.org/10.1111/j.1365-246X.2006.02920.x

    Article  Google Scholar 

  • Pluff, D. (1976). Gravity and magnetic fields of polygonal prisms and application to magnetic terrain corrections. Geophysics, 41, 727–741.

    Article  Google Scholar 

  • Priestley, K., McKenzie, D., Barron, J., Tatar, M., & Debayle, E. (2012). The Zagros core: Deformation of the continental lithospheric mantle. Geochemistry, Geophysics, Geosystems, 13, Q11014. https://doi.org/10.1029/2012GC004435

    Article  Google Scholar 

  • Rahmani, M., Motaghi, K., Ghods, A., Sobouti, F., Talebian, M., Ai, Y., & Chen, L. (2019). Deep velocity image of the north Zagros collision zone (Iran) from regional and teleseismic tomography. Geophysical Journal International, 219, 1729–1740. https://doi.org/10.1093/gji/ggz393

    Article  Google Scholar 

  • Reid, A. B., Allsop, J. M., Granser, H., Millett, A. J., & Somerton, I. W. (1990). Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics, 55(1), 80–91. https://doi.org/10.1190/1.1442774

    Article  Google Scholar 

  • Salem, A., Williams, S., Fairhead, J., Ravat, D., & Smith, R. (2007). Tilt-depth method: a simple depth estimation method using frst order magnetic derivatives. Lead Edge, 26(12), 1502–1505. https://doi.org/10.1190/1.2821934

    Article  Google Scholar 

  • Sampietro, D. (2016). Crustal modelling and Moho estimation with GOCE gravity data. In T. Ten (Ed.), Remote sensing advances for earth system science (pp. 127–144). Springer.

    Chapter  Google Scholar 

  • Schmdit, S., Götze, H. J., Fichler, C., & Alver, M. (2010). IGMAS+ a new 3D gravity, FTG and magnetic modeling software (pp. 57–63). Geoinformatik.

    Google Scholar 

  • Snyder, D. B., & Barazangi, M. (1986). Deep crustal structure and flexure of the Arabian plate beneath the Zagros collisional mountain belt as inferred from gravity observations. Tectonics, 5, 361–373.

    Article  Google Scholar 

  • Stocklin, J. (1968). Structural history and tectonics of Iran: A review. American Association of Petroleum Geologists Bulletin, 52, 1229–1258.

    Google Scholar 

  • Sun, J., & Li, Y. (2015). Multidomain petrophysically constrained inversion and geology diferentiation using guided fuzzy c-means clustering. Geophysics, 80(4), ID1–ID18. https://doi.org/10.1190/geo2014-0049

    Article  Google Scholar 

  • Tatar, M., 2001. Etude seismotectonique de deux zones de collision continental: le Zagros Central et l’Alborz (Iran). PhD. Thesis university of Grenoble, France.

  • Werner, S. (1953). Interpretation of magnetic anomalies at sheet-like bodies. Sveriges Geologiska Undersok, Series C, Arsbok, 43(1949), 6.

    Google Scholar 

  • Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J. F., & Wobbe, F. (2013). Generic mapping tools: Improved version released. EOS, Transactions of the American Geophysical Union, 94(45), 409–410.

    Article  Google Scholar 

Download references

Acknowledgements

Special thanks should be devoted to the National Cartographic Center (NCC) of Iran for providing the gravity data set. N.M. acknowledges the research grant received from the International Center for Science and Technology of Iran. Most of the figures were produced with the GMT software (Wessel et al., 2013).

Funding

The authors declare that no funds, grant or other support was received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

VEA: Conceptualization; Formal analysis; Methodology; Investigation; Writing original draft; Writing—review and editing. NM: Conceptualization; Validation; Visualization; Writing—review and editing.

Corresponding author

Correspondence to Vahid E. Ardestani.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ardestani, V.E., Mousavi, N. The Moho Relief Beneath the Zagros Collision Zone Through Modeling of Ground-Based Gravity Data and Utilizing Open-Source Resources in Python. Pure Appl. Geophys. 180, 909–918 (2023). https://doi.org/10.1007/s00024-022-03221-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-03221-7

Keywords

Navigation