Skip to main content
Log in

An Improved Probabilistic Seismic Hazard Assessment of Tripura, India

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The state of Tripura lies in northeast India, which is considered one of the most seismically active regions of the world. In the present study, a realistic probabilistic seismic hazard assessment (PSHA) of Tripura state is presented based on improved seismogenic sources considering layered polygonal sources corresponding to hypocentral depth ranges of 0–25, 25–70 and 70–180 km, respectively, and data-driven selection of suitable ground motion prediction equations (GMPEs) in a logic tree framework. Analyses are carried out by formulating a layered seismogenic source zonation together with smooth-gridded seismicity. Using the limited accelerogram records available, the most suitable GMPEs are selected after performing a thorough quantitative assessment, and thus the uncertainty in selecting appropriate GMPEs in PSHA is addressed by combining them with the proper weight factor. The computations of seismic hazard are carried out in a higher-resolution grid interval of 0.05\(^{\circ }\) \(\times\) 0.05\(^{\circ }\). The probabilistic seismic hazard distribution in terms of peak ground acceleration (PGA) and \(5\%\) damped pseudo-spectral acceleration (PSA) at different time periods for 10% and \(2\%\) probability of exceedance in 50 years at engineering bedrock level are presented. The final results show significant improvements over previous studies, which is reflected in the local variation in the hazard maps. The design response spectra at engineering bedrock level can be computed for any location in the study region from the hazard distributions. The results will be useful for earthquake-resistant design and construction of structures in this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abrahamson, N. A., & Silva, W. (2008). Summary of the Abrahamson and Silva NGA GRound motion relations. Earthquake Spectra, 24, 67–197.

    Article  Google Scholar 

  • Allen, T. I., Gibson, G., Brown, A., & Cull, J. P. (2004). Depth variation of seismic source scaling relations: Implications for earthquake hazard southeastern Australia. Tectonophysics, 390, 5–24.

    Article  Google Scholar 

  • Ambraseys, N. (2000). Reappraisal of north-Indian earthquakes at the turn of the \(20^{th}\) century. Current Science, 79(9), 1237–1250.

    Google Scholar 

  • Angelier, J., & Baruah, S. (2009). Seismotectonics in Northeast India: a stress analysis of focal mechanism solutions of earthquakes and its kinematic implications. Geophysical Journal International, 178, 303–326.

    Article  Google Scholar 

  • Arango MC, Free MW, Lubkowski ZA, Pappin JW, Musson RMW, Jones G, Hodge E (2012) Comparing predicted and observed ground motion from UK earthquakes. Proceedings of the \(15^{th}\) World Conference on Earthquake Engineering, Lisbon, Portugal 30:24390–24399

  • ASCE (2010) Minimum design loads for buildings and other structures. standard ASCE/SEI 7, Reston, USA: American Society of Civil Engineers

  • Atkinson, G. M., & Boore, D. M. (2003). Empirical ground-motion predictions for eastern North America. Bulletin of the Seismological Society of America, 93, 1703–1729.

    Article  Google Scholar 

  • Basu, S., & Nigam, N. C. (1977). Seismic risk analysis of Indian Peninsula. Proceedings of Sixth World Conference on Earthquake Engineering, New Delhi, 1, 1782–1788.

    Google Scholar 

  • Bath, M. (1965). Lateral inhomogeneities in the upper mantle. Tectonophysics, 2, 483–514.

    Article  Google Scholar 

  • Bhatia, S. C., Kumar, M. R., & Gupta, H. K. (1999). A probabilistic seismic hazard map of India and adjoining regions. Annali di Geofisica, 42, 1153–1166.

    Google Scholar 

  • Bilham, R., & England, P. (2001). Plateau pop-up in the 1897 Assam earthquake. Nature, 410, 806–809.

    Article  Google Scholar 

  • BIS (1893–2016) Indian Standard Criteria for Earthquake Resistant Design of Structures. Part 1-General Provisions and Buildings, Bureau of Indian Standards, New Delhi

  • Bollinger, G. A., Sibol, M. S., & Chapman, M. C. (1992). Maximum magnitude estimation for an intraplate setting-examples: the Giles County, Virginia seismic zone. Seismological Research Letters, 63(2), 139–152.

    Article  Google Scholar 

  • Bommer, J. J., & Crowley, H. (2017). The purpose and definition of the maximum magnitude limit in PSHA calculations. Seismological Research Letters, 84(4), 1097–1106.

    Article  Google Scholar 

  • Campbell, K. W., & Bozorgnia, Y. (2008). NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s. Earthquake Spectra, 24, 139–171.

    Article  Google Scholar 

  • Chiou, B., & Youngs, R. R. (2008). An NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake spectra, 24, 173–215.

    Article  Google Scholar 

  • Christova, C. (1992). Seismicity depth pattern, seismic energy and b value depth variation in the Hellenic Wadati-Benioff zone. Physics of the earth and Planetary Interiors, 72, 69–93.

    Article  Google Scholar 

  • Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58, 1583–1606.

    Article  Google Scholar 

  • Cornell CA, Vanmarcke HE (1969) The major influence on seismic risk. The 4th World Conference on Earhquake engineering Santiago, chile pp 69–93

  • Das, R., Sharma, M. L., & Wason, H. R. (2016). Probabilistic seismic hazard assessment for northeast India region. Pure and Applied Geophysics, 173, 2653–2670.

    Article  Google Scholar 

  • Dasgupta, S., Pande, P., Ganguly, D., Iqbal, Z., Sanyal, K., Venaktraman, N. V., Dasgupta, S., Sural, B., Harendranath, L., Mazumdar, K., Sanyal, S., Roy, A., Das, L. K., Misra, P. S., & Gupta, H. (2000). Seismotectonic Atlas of India and its Environs. Calcutta: Geological Survey of India.

    Google Scholar 

  • Filiz, K. T., & Kartal, R. F. (2012). The new empirical magnitude conversion relations using an improved earthquake catalogue for Turkey and its near vicinity (1900–2012). Turkish Journal of Earth Sciences, 25, 300–310.

    Google Scholar 

  • Frankel, A. (1995). Mapping seismic hazard in the Central and Eastern United States. Seismol Res Lett, 66(4), 8–21.

    Article  Google Scholar 

  • Frankel, A. D., Petersen, M. D., Mueller, C. S., Haller, K. M., Wheeler, R. L., Wesson, E. V., Harmsen, S. C., Cramer, C. H., Perkins, D. M., & Rukstales, K. S. (2002). Documentation for the 2002 update of national seismic hazards maps. US Geological Survey Open File Report, 2, 2–420.

    Google Scholar 

  • Gansser, A. (1964). Geology of the Himalayas. London: John Wiley Inter-science Publishers.

    Google Scholar 

  • Gardner, J. K., & Knopoff, L. (1974). Is the sequence of earthquakes in southern California, with aftershocks removed, Poissonian? Bulletin of the Seismological Society of America, 64(5), 1363–1367.

    Article  Google Scholar 

  • Gupta, I. D. (2006). Delineation of probable seismic sources in India and neighbourhood by a comparative analysis of seismotectonic characteristics of the region. Soil Dynamics and Earthquake Engineering, 26, 766–790.

    Article  Google Scholar 

  • Gupta, I. D. (2010). Response spectral attenuation relations for in-slab earthquakes in Indo-Burmese subduction zone. Soil Dynamics and Earthquake Engineering, 30, 368–377.

    Article  Google Scholar 

  • Gutenberg, B., & Richter, C. F. (1944). Frequency of earthquake in California. Bulletin of the Seismological Society of America, 34, 185–188.

    Article  Google Scholar 

  • Guzman-Speziale M, Ni JF (1996) Seismicity and active tectonics of the western Sunda Arc, the tectonic evolution of Asia. Cambridge University Press, New York pp 63–84

  • Heaton, T. H., Tajima, F., & Mori, A. (1986). Estimating ground motions using recorded accelerograms. Surv Geophy, 8, 25–83.

    Article  Google Scholar 

  • ICC. (2009). International Code Council (p. 161). Country Club Hills, Illinois: Inc.

    Google Scholar 

  • Iyengar RN, Paul DK, Bhandari RK, Sinha R, Chadha RK, Pande P, Murthy CVR, Shukla AK, Rao KB, Kanth STGR (2011) Development of probabilistic seismic hazard map of India. Technical Report of the working committee of experts constituted by the National Disaster Management Authority, Government of India, New Delhi

  • Jaiswal K, Sinha R (2004) Web portal on earthquake disaster awareness in India, available online at http://www.earthquakeinfo.org

  • Jaiswal, K., & Sinha, R. (2007). Probabilistic seismic-hazard estimation for Peninsular India. Bulletin of the Seismological Society of America, 97, 318–330.

    Article  Google Scholar 

  • Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled seamless SRTM data V4. International Centre for Tropical Agriculture (CIAT), available from https://www.srtmcsicgiarorg

  • Kaklamanos, J., Baise, L. G., & Boore, M. (2011). Estimating unknown input parameters when implementing the NGA ground motion prediction equations in engineering practice. Earthquake Spectra, 27(4), 1219–1235.

    Article  Google Scholar 

  • Kanno, T., Narita, A., Morikawa, N., Fujiwara, H., & Fukushima, Y. (2006). A new attenuation relation for strong ground motion in Japan based on recorded data. Bulletin of the seismological Society of America, 96, 879–897.

    Article  Google Scholar 

  • Kayal, J. R. (1991). Microseismicity and tectonics in northeast India. Bulletin of the seismological Society of America, 81, 131–138.

    Article  Google Scholar 

  • Khattri, K. N. (2006). A need to review the current official seismic zoning map of India. Current Science, 90, 634–636.

    Google Scholar 

  • Khattri, K. N., Rogers, A. M., Perkins, D. M., & Algermissen, S. T. (1984). A seismic hazard map of India and its adjacent areas. Tectonophysics, 108, 93–134.

    Article  Google Scholar 

  • Kijko, A. (2004). Estimation of the maximum earthquake magnitude. Pure and Applied Geophysics, 161, 1655–1681.

    Article  Google Scholar 

  • Kijko, A., & Graham, G. Z. (1998). Parametric-historic procedure for probabilistic seismic hazard analysis: Part i-estimation of maximum magnitude regional magnitude. Pure and Applied Geophysics, 152, 413–442.

    Article  Google Scholar 

  • Kijko, A., & Singh, M. (2011). Statistical tool for maximum possible earthquake magnitude estimation. Acta Geophysica, 59(4), 674–700.

    Article  Google Scholar 

  • Kramer SL (2013) Geotechnical Earthquake Engineering. Pearson Education, Inc

  • Kumar, A., Mitra, S., & Suresh, G. (2015). Seismotectonics of the eastern Himalayan and Indo-Burman plate boundary system. Tectonics, 34, 2279–2295.

    Article  Google Scholar 

  • Lapajne, J., Motnikar, B. S., & Zupancic, P. (2003). Probabilistic seismic hazard assessment methodology for distributed seismicity. Bulletin of the Seismological Society of America, 93, 2502–2515.

    Article  Google Scholar 

  • Maiti, S. K., Nath, S. K., Adhikari, M. D., Srivastava, N., Sengupta, P., & Gupta, A. K. (2017). Probabilistic seismic hazard model of West Bengal, India. Journal of Earthquake Engineering, 21, 1113–1157.

    Article  Google Scholar 

  • McGuire RK (1976) Fortran computer program for seismic risk analysis. US Geological Survey, Open File Report pp 76–67

  • Mukhopadhyay, M., & Dasgupta, S. (1988). Deep structure and tectonics of the Burmese arc; constraints from earthquake and gravity data. Tectonophysics, 149, 299–322.

    Article  Google Scholar 

  • Nath, S. K. (2006). Seismic hazard and microzonation atlas of Sikkim Himalaya. Govt of India, New Delhi, India: Department of Science and Technology.

    Google Scholar 

  • Nath, S. K., & Thingbaijam, K. (2012). Probabilistic seismic hazard assessment of India. Seismological Research Letters, 83, 135–149.

    Article  Google Scholar 

  • Oldham, R. D. (1899). Report on great earthquake of 12 June 1897. Memoirs of the Geological Survey of India, 29, 1–379.

    Google Scholar 

  • Oldham, T. (1869). A catalogue of Indian earthquakes from the earliest time to the end of A. D. 1869. Memoirs of the Geological Survey of India, 1883, 163–215.

    Google Scholar 

  • Raghukanth, S. T. G., Sreelatha, S., & Dash, S. K. (2008). Ground motion estimation at Guwahati city for an \(M_W\) 8.1 earthquake in the Shillong Plateau. Tectonophys, 448, 98–114.

    Article  Google Scholar 

  • Santo, T. (1969). On the characteristics seismicity in south Asia from Hindukush to Burma. Bulletin of International Institute of Seismology and earthquake Engineering, 6, 81–93.

    Google Scholar 

  • Scherbaum, F., Cotton, F., & Smit, P. (2004). On the use of response spectral-reference data for the selection and ranking of ground-motion models for seismic-hazard analysis in regions of moderate seismicity: the case of rock motion. Bulletin of Seismological Society of America, 94, 2164–2185.

    Article  Google Scholar 

  • Scordilis, E. M. (2006). Empirical global relations converting MS and mb to moment magnitude. J Seismol, 10, 225–236.

    Article  Google Scholar 

  • Sharma ML, Malik S (2006) Probabilistic seismic hazard analysis and Estimation of spectral strong ground motion on bedrock in northeast India. Fourth International Conference on Earthquake Engineering, Taipei, Taiwan 15

  • Sipkin, S. A. (2003). A correction to body-wave magnitude mb based on moment magnitude Mw. Seismol Res Lett, 74(6), 739–742.

    Article  Google Scholar 

  • Sitharam, T. G., & Sil, A. (2014). Comprehensive seismic hazard assessment of Tripura and Mizoram states. Journal of Earth System Science, 123, 837–857.

    Article  Google Scholar 

  • Stepp JC (1972) Analysis of completeness of the earthquake sample in the Puget Sound area and its effects on statistical estimate of earthquake hazard. Proceedings of the International Conference on microzonation for safer construction research and application, Seattle, USA pp 897–910

  • Stirling, M., McVerry, G. H., & Berryman, K. R. (2002). A new seismic hazard model for new Zealand. Bulletin of the Seismological Society of America, 92, 1878–1903.

    Article  Google Scholar 

  • Taspanos, T. M. (2000). The depth distribution of seismicity parameters estimated for the South American area. Earth Planet Science Letters, 180, 103–115.

    Article  Google Scholar 

  • Thingbaijam, K. K. S., Nath, S. K., Yadav, A., Raj, A., Walling, Y. M., & Mohanty, W. K. (2008). Recent seismicity in northeast India and its adjoining region. Journal of Seismology, 12, 107–123.

    Article  Google Scholar 

  • Weichert, D. H. (1980). Estimation of the earthquake recurrence parameter for unequal observation periods for different magnitudes. Bull Seism Soc Am, 70(4), 1337–1346.

    Article  Google Scholar 

  • Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude rupture length, rupture width and surface displacements. Bull Seism Soc Am, 84(4), 974–1002.

    Google Scholar 

  • Wessel, P., Luis, F. J., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., & Tian, D. (2019). The Generic Mapping Tools version, 6, 5556–5564.

    Google Scholar 

  • Youngs, R. R., & Coppersmith, K. J. (1985). Implication of fault slip rates and earthquake recurrence models to probabilistic seismic hazard estimates. Bull Seismol Soc Am, 75(4), 939–964.

    Google Scholar 

  • Youngs, R. R., Chiou, S. J., Silva, W. J., & Humphrey, J. R. (1997). Strong ground motion relationships for subduction earthquakes. Seismological Research Letters, 68, 58–73.

    Article  Google Scholar 

Download references

Acknowledgements

One of the authors (S. Sinha) sincerely thanks Prof. A. Kijko for providing the computer program for determining \(M_\texttt{max}\). Figures 2, 3, 4, 7, 10 were prepared by using the Generic Mapping Tools (GMT) software package (Wessel et al., 2019), available at https://www.generic-mapping-tools.org/. The authors are also thankful to Shri Rizwan Ali, Scientist-E and Shri A. K. Agrawal, Director, for continuous motivation towards conducting the present research.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Sinha.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, S., Selvan, S. An Improved Probabilistic Seismic Hazard Assessment of Tripura, India. Pure Appl. Geophys. 179, 4371–4393 (2022). https://doi.org/10.1007/s00024-022-03176-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-03176-9

Keywords

Navigation