Skip to main content
Log in

Spatiotemporal Variability, Trend, and Change-Point of Precipitation Extremes and Their Contribution to the Total Precipitation in Iran

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The present study analyzes the observed extreme precipitation based on the daily precipitation records of 49 ground stations across Iran from 1980 to 2019. The present study aims to investigate the frequency, intensity, and trend of precipitation extremes in different climate zones. We computed the new extreme precipitation indices (EPI) recommended by the Expert Team on Sector–Specific Climate Indices (ET-SCI) and used two nonparametric tests, the modified Mann–Kendall (MM–K) test and Sen slope estimator (SSE), to identify the trend magnitude. Also, we applied the Buishand test for detecting the potential change-point of EPIs in Iran. The results showed that the consecutive wet days (CWD) are decreasing at 73.47% of the stations in Iran. The annual sum of precipitation in wet days (PRCPTOT) index in 87.76% of Iran showed a decreasing trend, indicating severe drought conditions in Iran. The simple daily intensity index (SDII) in 71.42% (30.23% at the level of 0.05 significance) has an increasing trend. The heavy precipitation index (R10mm) showed a decreasing trend in all zones. The most frequent change-point of extreme precipitation occurred in 1997 and 1998 on Iran’s west, southeast, and southern coasts. Increasing the intensity of precipitation along with decreasing in precipitation frequency has caused the increased contribution of extreme precipitation to the total annual precipitation in Iran.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

The R package used in this paper is available on github (https://github.com/ECCC-CDAS/RClimDex).

References

  • Ajjur, S. B., & Riffi, M. I. (2020). Analysis of the observed trends in daily extreme Precipitation indices in Gaza Strip during 1974–2016. International Journal of Climatology. https://doi.org/10.1002/joc.6576

    Article  Google Scholar 

  • Alavinia, S. H., & Zarei, M. (2021). Analysis of spatial changes of extreme precipitation and temperature in Iran over a 50-year period. International Journal of Climatology, 41, E2269–E2289.

    Article  Google Scholar 

  • Alexander, L. V., Fowler, H. J., Bador, M., Behrangi, A., Donat, M. G., Dunn, R., & Venugopal, V. (2019). On the use of indices to study extreme precipitation on sub-daily and daily timescales. Environmental Research Letters, 14(12), 125008.

    Article  Google Scholar 

  • Alijani, B., & Harman, J. R. (1985). Synoptic climatology of precipitation in Iran. Annals of the Association of American Geographers, 75(3), 404–416.

    Article  Google Scholar 

  • Alijani, B., O’Brien, J., & Yarnal, B. (2008). Spatial analysis of precipitation intensity and concentration in Iran. Theoretical and Applied Climatology, 94(1), 107–124.

    Article  Google Scholar 

  • Alizadeh-Choobari, O., Ahmadi-Givi, F., Mirzaei, N., & Owlad, E. (2016). Climate change and anthropogenic impacts on the rapid shrinkage of Lake Urmia. International Journal of Climatology, 36(13), 4276–4286.

    Article  Google Scholar 

  • Babaeian, I., & Rezazadeh, P. (2018). On the relationship between Indian monsoon withdrawal and Iran’s fall precipitation onset. Theoretical and Applied Climatology, 134(1–2), 95–105.

    Article  Google Scholar 

  • Beck, H. E., Zimmermann, N. E., McVicar, T. R., Vergopolan, N., Berg, A., & Wood, E. F. (2018). Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data, 5(1), 1–12.

    Article  Google Scholar 

  • Benestad, R. E. (2018). Implications of a decrease in the precipitation area for the past and the future. Environmental Research Letters, 13(4), 044022.

    Article  Google Scholar 

  • Beniston, M. (2015). Ratios of record high to record low temperatures in Europe exhibit sharp increases since 2000 despite a slowdown in the rise of mean temperatures. Climatic Change, 129(1–2), 225–237.

    Article  Google Scholar 

  • Buishand, T. A. (1982). Some methods for testing the homogeneity of rainfall records. Journal of Hydrology, 58(1–2), 11–27.

    Article  Google Scholar 

  • Cardoso Pereira, S., Marta-Almeida, M., Carvalho, A. C., & Rocha, A. (2020). Extreme precipitation events under climate change in the Iberian Peninsula. International Journal of Climatology, 40(2), 1255–1278.

    Article  Google Scholar 

  • Carpenter, S. R., Booth, E. G., & Kucharik, C. J. (2018). Extreme precipitation and phosphorus loads from two agricultural watersheds. Limnology and Oceanography, 63(3), 1221–1233.

    Article  Google Scholar 

  • Chapagain, D., Dhaubanjar, S., & Bharati, L. (2021). Unpacking future climate extremes and their sectoral implications in western Nepal. Climatic Change, 168(1), 1–23.

    Google Scholar 

  • Dadashi-Roudbari, A., & Ahmadi, M. (2020). Evaluating temporal and spatial variability and trend of aerosol optical depth (550 nm) over Iran using data from MODIS on board the Terra and Aqua satellites. Arabian Journal of Geosciences, 13(6), 1–23.

    Article  Google Scholar 

  • Dadashi-Roudbari, A., & Ahmadi, M. (2021). An assessment of change point and trend of diurnal variation of dust storms in Iran: A multi-instrumental approach from in situ, multi-satellite, and reanalysis dust product. Meteorology and Atmospheric Physics, 133(5), 1523–1544.

    Article  Google Scholar 

  • Daniels, E. E., Hutjes, R. W., Lenderink, G., Ronda, R. J., & Holtslag, A. A. (2015). Land surface feedbacks on spring precipitation in the Netherlands. Journal of Hydrometeorology, 16(1), 232–243.

    Article  Google Scholar 

  • Darand, M., Dostkamyan, M., & Rehmani, M. I. A. (2017). Spatial autocorrelation analysis of extreme precipitation in Iran. Russian Meteorology and Hydrology, 42(6), 415–424.

    Article  Google Scholar 

  • de Vries, A. J., Tyrlis, E., Edry, D., Krichak, S. O., Steil, B., & Lelieveld, J. (2013). Extreme precipitation events in the Middle East: Dynamics of the Active Red Sea Trough. Journal of Geophysical Research: Atmospheres, 118(13), 7087–7108.

    Article  Google Scholar 

  • Donat, M. G., Alexander, L. V., Yang, H., Durre, I., Vose, R., Dunn, R. J. H., & Kitching, S. (2013). Updated analyses of temperature and precipitation extreme indices since the beginning of the twentieth century: The HadEX2 dataset. Journal of Geophysical Research: Atmospheres, 118(5), 2098–2118.

    Article  Google Scholar 

  • Donat, M. G., Lowry, A. L., Alexander, L. V., O’Gorman, P. A., & Maher, N. (2017). Addendum: More extreme precipitation in the world’s dry and wet regions. Nature Climate Change, 7(2), 154–158.

    Article  Google Scholar 

  • Donat, M. G., Angélil, O., & Ukkola, A. M. (2019). Intensification of precipitation extremes in the world’s humid and water-limited regions. Environmental Research Letters, 14(6), 065003.

    Article  Google Scholar 

  • Dravitzki, S., & McGregor, J. (2011). Extreme precipitation of the Waikato region. New Zealand. International Journal of Climatology, 31(12), 1803–1812.

    Article  Google Scholar 

  • Fathian, F., Ghadami, M., Haghighi, P., Amini, M., Naderi, S., & Ghaedi, Z. (2020). Assessment of changes in climate extremes of temperature and precipitation over Iran. Theoretical and Applied Climatology, 141, 1119–1133. https://doi.org/10.1007/s00704-020-03269-2

    Article  Google Scholar 

  • Flocas, H. A., Simmonds, I., Kouroutzoglou, J., Keay, K., Hatzaki, M., Bricolas, V., & Asimakopoulos, D. (2010). On cyclonic tracks over the eastern Mediterranean. Journal of Climate, 23(19), 5243–5257.

    Article  Google Scholar 

  • Ghalhari, G. F., Roudbari, A. D., & Asadi, M. (2016). Identifying the spatial and temporal distribution characteristics of precipitation in Iran. Arabian Journal of Geosciences, 9(12), 1–12.

    Google Scholar 

  • Ghiami-Shamami, F., Sabziparvar, A. A., & Shinoda, S. (2019). Long-term comparison of the climate extremes variability in different climate types located in coastal and inland regions of Iran. Theoretical and Applied Climatology, 136(3–4), 875–897.

    Article  Google Scholar 

  • Guo, X., Wu, Z., He, H., Du, H., Wang, L., Yang, Y., & Zhao, W. (2018). Variations in the start, end, and length of extreme precipitation period across China. International Journal of Climatology, 38(5), 2423–2434.

    Article  Google Scholar 

  • Hamed, K. H. (2008). Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypothesis. Journal of Hydrology, 349(3–4), 350–363.

    Article  Google Scholar 

  • Hay, J. E., Easterling, D., Ebi, K. L., Kitoh, A., & Parry, M. (2016). Conclusion to the special issue: Observed and projected changes in weather and climate extremes. Weather and Climate Extremes, 11, 103–105.

    Article  Google Scholar 

  • Heureux, A. M. C., Alvar-Beltrán, J., Manzanas, R., Ali, M., Wahaj, R., Dowlatchahi, M., Afzaal, M., Kazmi, D., Ahmed, B., Salehnia, N., & Fujisawa, M. (2022). Climate Trends and Extremes in the Indus River Basin, Pakistan: Implications for Agricultural Production. Atmosphere, 13(3), 378.

    Article  Google Scholar 

  • Hoegh-Guldberg, O., Jacob, D., Bindi, M., Brown, S., Camilloni, I., Diedhiou, A., & Hijioka, Y. (2018). Impacts of 1.5 C global warming on natural and human systems. Global warming of 1.5° C. An IPCC Special Report.

  • Intergovernmental Panel on Climate Change (IPCC), (2013). In: Stocker, T.F., et al. (Eds.), Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ Press, Cambridge, United Kingdom and New York, NY, USA

  • IPCC (2012). Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation. A Special Report of Working Groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, and New York, NY, USA, 582 pp

  • Javanmard, S., Yatagai, A., Nodzu, M. I., BodaghJamali, J., & Kawamoto, H. (2010). Comparing high-resolution gridded precipitation data with satellite rainfall estimates of TRMM_3B42 over Iran. Advances in Geosciences, 25, 119–125.

    Article  Google Scholar 

  • Kendall, M. G. (1948). Rank correlation methods.

  • Khalili, K., Tahoudi, M. N., Mirabbasi, R., & Ahmadi, F. (2016). Investigation of spatial and temporal variability of precipitation in Iran over the last half century. Stochastic Environmental Research and Risk Assessment, 30(4), 1205–1221.

    Article  Google Scholar 

  • Kharin, V. V., Zwiers, F. W., Zhang, X., & Wehner, M. (2013). Changes in temperature and precipitation extremes in the CMIP5 ensemble. Climatic Change, 119(2), 345–357.

    Article  Google Scholar 

  • Kharin, V. V., Flato, G. M., Zhang, X., Gillett, N. P., Zwiers, F., & Anderson, K. J. (2018). Risks from climate extremes change differently from 1.5 C to 2.0 C depending on rarity. Earth’s Future, 6(5), 704–715.

    Article  Google Scholar 

  • Kiany, M. S. K., Masoodian, S. A., Balling, R. C., Jr., & Montazeri, M. (2020). Evaluation of the TRMM 3B42 product for extreme precipitation analysis over southwestern Iran. Advances in Space Research, 66(9), 2094–2112.

    Article  Google Scholar 

  • Kirschbaum, D., Kapnick, S. B., Stanley, T., & Pascale, S. (2020). Changes in extreme precipitation and landslides over High Mountain Asia. Geophysical Research Letters, 47(4), e2019GL085347.

  • Kunkel, K. E. (2003). North American trends in extreme precipitation. Natural Hazards, 29(2), 291–305.

    Article  Google Scholar 

  • Leander, R., Buishand, T. A., & Tank, A. K. (2014). An alternative index for the contribution of precipitation on very wet days to the total precipitation. Journal of Climate, 27(4), 1365–1378.

    Article  Google Scholar 

  • Li, Y. G., He, D., Hu, J. M., & Cao, J. (2015). Variability of extreme precipitation over Yunnan Province, China 1960–2012. International Journal of Climatology, 35(2), 245–258.

    Article  Google Scholar 

  • Liu, H., Remer, L. A., Huang, J., Huang, H. C., Kondragunta, S., Laszlo, I., & Jackson, J. M. (2014). Preliminary evaluation of S-NPP VIIRS aerosol optical thickness. Journal of Geophysical Research: Atmospheres, 119(7), 3942–3962.

    Article  Google Scholar 

  • Maghrabi, A. H., & Alotaibi, R. N. (2018). Long-term variations of AOD from an AERONET station in the central Arabian Peninsula. Theoretical and Applied Climatology, 134(3–4), 1015–1026.

    Article  Google Scholar 

  • Mahbod, M., & Rafiee, M. R. (2021). Trend analysis of extreme precipitation events across Iran using percentile indices. International Journal of Climatology, 41(2), 952–969.

    Article  Google Scholar 

  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrica. Journal of the Econometric Society, 13, 245–259.

    Article  Google Scholar 

  • Masih, I., Uhlenbrook, S., Maskey, S., & Smakhtin, V. (2011). Streamflow trends and climate linkages in the Zagros Mountains, Iran. Climatic Change, 104(2), 317–338.

    Article  Google Scholar 

  • Masson-Delmotte, V., Zhai, P., Pörtner, H. O., Roberts, D., Skea, J., Shukla, P. R., & Waterfield, T. (2018). Global warming of 1.5 C. An IPCC Special Report on the Impacts of Global Warming of, 1, 1–9.

    Google Scholar 

  • Mofidi, A. (2005). Synoptic Climatology of Heavy Rainfalls with Origin of Red Sea Region in the Middle East. GEOGRAPHICAL RESEARCH, 19(4), 71–93. (In Persian).

    Google Scholar 

  • Myers, L., & Sirois, M. J. (2004). S pearman Correlation Coefficients, Differences between. Encyclopedia of statistical sciences.

  • Najafi, M. R., & Moazami, S. (2016). Trends in total precipitation and magnitude–frequency of extreme precipitation in Iran, 1969–2009. International Journal of Climatology, 36(4), 1863–1872.

    Article  Google Scholar 

  • Nazemosadat, M. J., & Ghasemi, A. R. (2004). Quantifying the ENSO-related shifts in the intensity and probability of drought and wet periods in Iran. Journal of Climate, 17(20), 4005–4018.

    Article  Google Scholar 

  • Nissen, K. M., Leckebusch, G. C., Pinto, J. G., & Ulbrich, U. (2014). Mediterranean cyclones and windstorms in a changing climate. Regional Environmental Change, 14(5), 1873–1890.

    Article  Google Scholar 

  • Norris, J., Chen, G., & Neelin, J. D. (2019). Changes in frequency of large precipitation accumulations over land in a warming climate from the CESM Large Ensemble: The roles of moisture, circulation, and duration. Journal of Climate, 32(17), 5397–5416.

    Article  Google Scholar 

  • Palharini, R. S. A., Vila, D. A., Rodrigues, D. T., Quispe, D. P., Palharini, R. C., de Siqueira, R. A., & de Sousa Afonso, J. M. (2020). Assessment of the extreme precipitation by satellite estimates over South America. Remote Sensing, 12(13), 2085.

    Article  Google Scholar 

  • Pour, S. H., Wahab, A. K. A., & Shahid, S. (2020). Spatiotemporal changes in precipitation indicators related to bioclimate in Iran. Theoretical and Applied Climatology, 141(1), 99–115.

    Article  Google Scholar 

  • Prein, A. F., Rasmussen, R. M., Ikeda, K., Liu, C., Clark, M. P., & Holland, G. J. (2017). The future intensification of hourly precipitation extremes. Nature Climate Change, 7(1), 48–52.

    Article  Google Scholar 

  • Rahimi, M., & Fatemi, S. S. (2019). Mean versus extreme precipitation trends in Iran over the period 1960–2017. Pure and Applied Geophysics, 176(8), 3717–3735.

    Article  Google Scholar 

  • Rahimzadeh, F., Asgari, A., & Fattahi, E. (2009). Variability of extreme temperature and precipitation in Iran during recent decades. International Journal of Climatology: A Journal of the Royal Meteorological Society, 29(3), 329–343.

    Article  Google Scholar 

  • Rahman, M. S., & Islam, A. R. M. T. (2019). Are precipitation concentration and intensity changing in Bangladesh overtimes? Analysis of the possible causes of changes in precipitation systems. Science of the Total Environment, 690, 370–387.

    Article  Google Scholar 

  • Raziei, T., Mofidi, A., Santos, J. A., & Bordi, I. (2012). Spatial patterns and regimes of daily precipitation in Iran in relation to large-scale atmospheric circulation. International Journal of Climatology, 32(8), 1226–1237.

    Article  Google Scholar 

  • Roushangar, K., Alizadeh, F., & Adamowski, J. (2018). Exploring the effects of climatic variables on monthly precipitation variation using a continuous wavelet-based multiscale entropy approach. Environmental Research, 165, 176–192.

    Article  Google Scholar 

  • Rousta, I., Karampour, M., Doostkamian, M., Olafsson, H., Zhang, H., Mushore, T. D., & Vargas, E. R. M. (2020). Synoptic-dynamic analysis of extreme precipitation in Karoun River Basin, Iran. Arabian Journal of Geosciences, 13(2), 1–16.

    Article  Google Scholar 

  • Salehi, S., Dehghani, M., Mortazavi, S. M., & Singh, V. P. (2020). Trend analysis and change point detection of seasonal and annual precipitation in Iran. International Journal of Climatology, 40(1), 308–323.

    Article  Google Scholar 

  • Schär, C., Ban, N., Fischer, E. M., Rajczak, J., Schmidli, J., Frei, C., & O’Gorman, P. A. (2016). Percentile indices for assessing changes in heavy precipitation events. Climatic Change, 137(1–2), 201–216.

    Article  Google Scholar 

  • Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall’s tau. Journal of American Statistical Association, 63, 1379–1389.

    Article  Google Scholar 

  • Shaffie, S., Mozaffari, G., & Khosravi, Y. (2019). Determination of extreme precipitation threshold and analysis of its effective patterns (case study: West of Iran). Natural Hazards, 99(2), 857–878.

    Article  Google Scholar 

  • Shongwe, M. E., van Oldenborgh, G. J., Van den Hurk, B., & van Aalst, M. (2011). Projected changes in mean and extreme precipitation in Africa under global warming. Part II: East Africa. Journal of climate, 24(14), 3718–3733.

    Article  Google Scholar 

  • Soltani, M., Laux, P., Kunstmann, H., Stan, K., Sohrabi, M. M., Molanejad, M., & Martin, M. V. (2016). Assessment of climate variations in temperature and precipitation extreme events over Iran. Theoretical and Applied Climatology, 126(3), 775–795.

    Article  Google Scholar 

  • Some’e, B. S., Ezani, A., & Tabari, H. (2012). Spatiotemporal trends and change point of precipitation in Iran. Atmospheric Research, 113, 1–12.

    Article  Google Scholar 

  • Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., & Midgley, P. M. (2013). Climate change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change, 1535.

  • Tabari, H. (2020). Climate change impact on flood and extreme precipitation increases with water availability. Scientific Reports, 10(1), 1–10.

    Google Scholar 

  • Tabari, H., & Willems, P. (2018). Seasonally varying footprint of climate change on precipitation in the Middle East. Scientific Reports, 8(1), 1–10.

    Article  Google Scholar 

  • Tabari, H., AghaKouchak, A., & Willems, P. (2014). A perturbation approach for assessing trends in precipitation extremes across Iran. Journal of Hydrology, 519, 1420–1427.

    Article  Google Scholar 

  • Talchabhadel, R., Karki, R., Thapa, B. R., Maharjan, M., & Parajuli, B. (2018). Spatio-temporal variability of extreme precipitation in Nepal. International Journal of Climatology, 38(11), 4296–4313.

    Article  Google Scholar 

  • Tan, J., Jakob, C., Rossow, W. B., & Tselioudis, G. (2015). Increases in tropical rainfall driven by changes in frequency of organized deep convection. Nature, 519(7544), 451–454.

    Article  Google Scholar 

  • Tebaldi, C., & Wehner, M. F. (2018). Benefits of mitigation for future heat extremes under RCP4. 5 compared to RCP8. 5. Climatic Change, 146(3–4), 349–361.

    Article  Google Scholar 

  • Thiel, H. (1950). A rank-invariant method of linear and polynomial regression analysis, Part 3. In Proceedings of Koninalijke Nederlandse Akademie van Weinenschatpen A (Vol. 53, pp. 1397–1412).

  • Trenberth, K. E., Dai, A., Rasmussen, R. M., & Parsons, D. B. (2003). The changing character of precipitation. Bull Am Meteorol Soc, 84(9), 1205–1218.

    Article  Google Scholar 

  • UNISDR (2015). The Human Cost of Weather-Related Disasters 1995–2015. United Nations Initiative for Disaster Reduction. Available at: https://www.unisdr.org/files/48588_ unisdrannualreport2015evs.pdf.

  • Wasko, C., Lu, W. T., & Mehrotra, R. (2018). Relationship of extreme precipitation, dry-bulb temperature, and dew point temperature across Australia. Environmental Research Letters, 13(7), 074031.

    Article  Google Scholar 

  • Westra, S., Alexander, L. V., & Zwiers, F. W. (2013). Global increasing trends in annual maximum daily precipitation. Journal of Climate, 26(11), 3904–3918.

    Article  Google Scholar 

  • Yue, S., & Hashino, M. (2003). Temperature trends in Japan: 1900–1996. Theoretical and Applied Climatology, 75(1–2), 15–27.

    Article  Google Scholar 

  • Zarrin, A., & Dadashi-Roudbari, A. (2021). Projection of future extreme precipitation in Iran based on CMIP6 multi-model ensemble. Theoretical and Applied Climatology, 144(1), 643–660.

    Article  Google Scholar 

  • Zhang, X., Alexander, L., Hegerl, G. C., Jones, P., Tank, A. K., Peterson, T. C., & Zwiers, F. W. (2011). Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdisciplinary Reviews: Climate Change, 2(6), 851–870.

    Google Scholar 

  • Zhang, W., Zhou, T., Zou, L., Zhang, L., & Chen, X. (2018). Reduced exposure to extreme precipitation from 0.5 C less warming in global land monsoon regions. Nature Communications, 9(1), 1–8.

    Google Scholar 

  • Zhang, X., Aguilar, E., Sensoy, S., Melkonyan, H., Tagiyeva, U., Ahmed, N., & Wallis, T. (2005). Trends in Middle East climate extreme indices from 1950 to 2003. Journal of Geophysical Research: Atmospheres, 110(D22).

  • Zolina, O., Simmer, C., Kapala, A., & Gulev, S. (2005). On the robustness of the estimates of centennial-scale variability in heavy precipitation from station data over Europe. Geophysical Research Letters. https://doi.org/10.1029/2005GL023231

    Article  Google Scholar 

Download references

Acknowledgements

Abbasali Dadashi-Roudbari was supported by a grant from Ferdowsi University of Mashhad (no. FUM 14002794075). We would like to thank the Iran Meteorological Organization (IRIMO) for providing the necessary data and information.

Funding

Vice Chancellor for Research of Ferdowsi University of Mashhad.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the analysis: Azar Zarrin and Abbasali Dadashi-Roudbari. Collected the data: Azar Zarrin and Abbasali Dadashi-Roudbari. Contributed data or analysis tools: Azar Zarrin and Abbasali Dadashi-Roudbari. Performed the analysis: Azar Zarrin and Abbasali Dadashi-Roudbari. Wrote the paper: Azar Zarrin and Abbasali Dadashi-Roudbari. Writing—review and editing: Azar Zarrin and Abbasali Dadashi-Roudbari.

Corresponding author

Correspondence to Azar Zarrin.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

We approve the ethical responsibilities of authors.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zarrin, A., Dadashi-Roudbari, A. Spatiotemporal Variability, Trend, and Change-Point of Precipitation Extremes and Their Contribution to the Total Precipitation in Iran. Pure Appl. Geophys. 179, 2923–2944 (2022). https://doi.org/10.1007/s00024-022-03098-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-03098-6

Keywords

Navigation