Skip to main content
Log in

Length Scale as a Fourth Spatial Dimension in Geology and Geophysics

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Three-dimensional coordinate systems define the location of zero-dimensional points. Higher dimensional spatial objects such as lines and planes become apparent from sets of adjacent points. Any point defined in three-dimensional space within a sedimentary basin could be simultaneously located on the surface of a sand grain and a bedding plane in a kilometer-scale fold, and structure at any other scale. Therefore, like many other aspects of geology and geophysics, structural geology is multiscale which is why filtering, smoothing, scale bars and the like are prerequisites for any kind of geological mapping and outcrop imagery. It is argued here that the association of points with higher-dimensional objects that form the spatial building blocks of geology singles out length scale as a geometrical parameter that is fundamental to the definition of an object. Properties such as curvature, porosity, color and so on can only be attributed after location and scale are defined. It is proposed that length scale be treated as a fourth spatial dimension in geological and geophysical applications, on an equal footing to the three spatial coordinate dimensions. The utility of adopting a four spatial dimension approach in geoscience is that it forces length scale to be explicitly specified in descriptions where it is routinely omitted, for example, measurements of structural orientation where a scale parameter greatly simplifies later mapmaking and model building. Taken together with geological time, it is convenient to define geological and geophysical structure in five spacetime dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ain, Q. T., & He, J.-H. (2019). On two-scale dimension and its applications. Thermal Science, 23(3B), 1707–1712.

    Article  Google Scholar 

  • Basile, C., Pecher, A., Corazzi, M., Odonne, F., Maillard, A., Debroas, E. J. & Callot, P. (2009). TrackDip: A multi-scale processing of dipmeter data—Method, tests, and field example for 3-D description of gravity-driven deformations in the Eocene foreland basin of Ainsa, Spain. Marine and Petroleum Geology, 26(5), 738–751. http://www.sciencedirect.com/science/article/pii/S0264817208001347.

  • Basile, C., & Monteverde, D. (2014). Bedding attitudes as a sequence stratigraphy proxy: A case study from borehole images, Integrated Ocean Drilling Program Expedition 313, Site M28. Geosphere, 10(2), 207–220. https://doi.org/10.1130/GES00856.1

    Article  Google Scholar 

  • Bergbauer, S., Mukerji, T., & Hennings, P. (2003). Improving curvature analyses of deformed horizons using scale-dependent filtering techniques. American Association of Petroleum Geologists Bulletin, 87(8), 1255–1272.

    Article  Google Scholar 

  • Briggs, I. C. (1974). Machine contouring using minimum curvature. Geophysics, 39(1), 39–48. https://doi.org/10.1190/1.1440410

    Article  Google Scholar 

  • Carmichael, T. & Ailleres, L. (2016). Method and analysis for the upscaling of structural data. Journal of Structural Geology, 83, 121–133. https://www.sciencedirect.com/science/article/pii/S0191814115300353.

  • Christie, M. A. (1996). Upscaling for reservoir simulation. Journal of Petroleum Technology, 48(11), 1004–1010. https://doi.org/10.2118/37324-JPT

    Article  Google Scholar 

  • Costa, M., Goldberger, A. L., & Peng, C. K. (2002). Multiscale entropy analysis of complex physiologic time series. Physical Review Letters, 89(6), 068102. https://doi.org/10.1103/PhysRevLett.89.068102

    Article  Google Scholar 

  • Cracknell, M. J., Roach, M., Green, D., & Lucieer, A. (2013). Estimating bedding orientation from high-resolution digital elevation models. IEEE Transactions on Geoscience and Remote Sensing, 51(5), 2949–2959.

    Article  Google Scholar 

  • Cruden, D. M., & Charlesworth, H. A. K. (1976). Errors in strike and dip measurements. GSA Bulletin, 87(7), 977–980. https://doi.org/10.1130/0016-7606(1976)87%3c977:EISADM%3e2.0.CO;2

    Article  Google Scholar 

  • Davies, R. J., Stewart, S. A., Cartwright, J. A., Lappin, M., Johnston, R., Fraser, S. I. & Brown, A. R. (2004). 3D seismic technology: Are we realizing its full potential? In R. J. Davies, J. A. Cartwright, S. A. Stewart, M. Lappin & J. R. Underhill, (Eds.). 3D Seismic Technology: Application to the exploration of sedimentary basins, Geological Society, London, Memoirs. 29, 1–10.

  • Deng, X., & Tang, Z.-A. (2011). Moving surface spline interpolation based on Green’s Function. Mathematical Geosciences, 43(6), 663–680. https://doi.org/10.1007/s11004-011-9346-5

    Article  Google Scholar 

  • Downs, T. C., & Mackaness, W. A. (2002). An integrated approach to the generalization of geological maps. The Cartographic Journal, 39(2), 137–152. https://doi.org/10.1179/caj.2002.39.2.137

    Article  Google Scholar 

  • Enge, H. D., Buckley, S. J., Rotevatn, A., & Howell, J. A. (2007). From outcrop to reservoir simulation model: Workflow and procedures. Geosphere, 3(6), 469–490. https://doi.org/10.1130/GES00099.1

    Article  Google Scholar 

  • Escudier, M. (2017). Introduction to Engineering Fluid Mechanics, Illustrated Edition ed. Oxford University Press, Oxford, pp. 608.

  • Farmer, C. L. (2005). Geological modelling and reservoir simulation. In A. Iske & T. Randen (Eds.), Mathematical methods and modelling in hydrocarbon exploration and production. Mathematics in Industry (Vol. 7, pp. 119–212). Springer.

    Google Scholar 

  • Fernández, O. (2005). Obtaining a best fitting plane through 3D georeferenced data. Journal of Structural Geology, 27(5), 855–858. http://www.sciencedirect.com/science/article/pii/S0191814105000143.

  • Freeman, B., Yielding, G., & Badley, M. E. (1990). Fault correlation during seismic interpretation. First Break, 8, 87–95.

    Article  Google Scholar 

  • Gao, J., Cao, Y., Tung, W.-W., & Hu, J. (2007). Multiscale analysis of complex time series: Integration of chaos and random fractal theory, and beyond (p. 351). John Wiley & Sons Inc.

    Book  Google Scholar 

  • Gerritsen, M. G., & Durlofsky, L. J. (2005). Modelling fluid flow in oil reservoirs. Annual Review of Fluid Mechanics, 37(1), 211–238. https://doi.org/10.1146/annurev.fluid.37.061903.175748

    Article  Google Scholar 

  • Giroldi, L., & Garossino, P. (2014). Interpreting with multiple wavelength curvature attributes. Interpretation, 2(1), SA141–SA150. https://doi.org/10.1190/INT-2013-0107.1

    Article  Google Scholar 

  • Gomarasca, M. A. (2009). Elements of cartography. In M. A. Gomarasca (Ed.), Basics of geomatics (pp. 19–77). Springer.

    Chapter  Google Scholar 

  • Groshong, R. H. (2006). 3-D Structural Geology: A practical guide to quantitative surface and subsurface map interpretation (2nd ed., p. 400). Springer-Verlag.

    Book  Google Scholar 

  • Guerriero, V., Iannace, A., Mazzoli, S., Parente, M., Vitale, S. & Giorgioni, M. (2010). Quantifying uncertainties in multi-scale studies of fractured reservoir analogues: Implemented statistical analysis of scan line data from carbonate rocks. Journal of Structural Geology, 32(9), 1271–1278. https://www.sciencedirect.com/science/article/pii/S0191814109000881.

  • Herrmann, F. J. (1998). Multiscale analysis of well and seismic data. Proceedings of the Society of Photo-Optical Instrumentation Engineers, 3453, Mathematical Methods in Geophysical Imaging V, 1-October, 1998.

  • Hill, E. J., Robertson, J. & Uvarova, Y. (2015). Multiscale hierarchical domaining and compression of drill hole data. Computers & Geosciences, 79, 47–57. https://www.sciencedirect.com/science/article/pii/S0098300415000540.

  • Hobbs, B. E., Ord, A., & Blenkinsop, T. (2022). The spatial distributions of mineralisation. Journal of Structural Geology, 156, 104529. https://doi.org/10.1016/j.jsg.2022.104529

    Article  Google Scholar 

  • Janssen, V. (2009). Understanding coordinate reference systems, datums and transformations. International Journal of Geoinformatics, 5(4), 41–53.

    Google Scholar 

  • Jiang, B. (2015). The fractal nature of maps and mapping. International Journal of Geographical Information Science, 29(1), 159–174. https://doi.org/10.1080/13658816.2014.953165

    Article  Google Scholar 

  • Jiang, B., Liu, X., & Jia, T. (2013). Scaling of geographic space as a universal rule for map generalization. Annals of the Association of American Geographers, 103(4), 844–855. https://doi.org/10.1080/00045608.2013.765773

    Article  Google Scholar 

  • Jones, S., Armstrong, N., Doe, M., Stewart, S. A., Bland, S. & Humphreys, R. (2007). Geo-constrained real time model update (RTMU) while drilling of the 3D structural framework model. AAPG Annual Meeting 07, Long Beach, California.

  • Lewis, K. W., Aharonson, O., Grotzinger, J. P., Kirk, R. L., McEwen, A. S., & Suer, T.-A. (2008). Quasi-periodic bedding in the sedimentary rock record of Mars. Science, 322(5907), 1532–1535. https://www.science.org/doi/abs/10.1126/science.1161870 .

    Article  Google Scholar 

  • Lindeberg, T. (2021). Normative theory of visual receptive fields. Heliyon, 7(1), e05897. https://www.sciencedirect.com/science/article/pii/S2405844021000025.

  • Lindeberg, T. (2014). Scale selection. In K. Ikeuchi (Ed.), Computer vision: A reference guide (pp. 701–713). Springer.

    Chapter  Google Scholar 

  • Lisle, R. J., Styles, P., & Freeth, S. J. (1990). Fold interference structures: The influence of layer competence contrast. Tectonophysics, 172(3–4), 197–200.

    Article  Google Scholar 

  • Marques, A., Horota, R. K., et al. (2020). Virtual and digital outcrops in the petroleum industry: A systematic review. Earth-Science Reviews, 208, 103260. https://www.sciencedirect.com/science/article/pii/S0012825220303068.

  • McCaffrey, K. J. W., Jones, R. R., et al. (2005). Unlocking the spatial dimension: digital technologies and the future of geoscience fieldwork. Journal of the Geological Society, 162(6), 927–938. https://jgs.lyellcollection.org/content/jgs/162/6/927.full.pdf.

  • McClay, K. R. (1987). The mapping of geological structures (p. 168). John Wiley & Sons Ltd.

    Google Scholar 

  • McMullen, C. (2008). The visual guide to extra dimensions: Visualizing the fourth dimension, higher-dimensional polytopes, and curved hypersurfaces, Custom Books, pp. 165.

  • Mencos, J., Gratacós, O., Farré, M., Escalante, J., Arbués, P. & Muñoz, J. A. (2012). Orientation domains: A mobile grid clustering algorithm with spherical corrections. Computers & Geosciences, 49, 140–150. http://www.sciencedirect.com/science/article/pii/S0098300412002233.

  • Mitášová, H., & Hofierka, J. (1993). Interpolation by regularized spline with tension: II. Application to terrain modeling and surface geometry analysis. Mathematical Geology, 25(6), 657–669. https://doi.org/10.1007/BF00893172

    Article  Google Scholar 

  • Mokhtarian, F., Khalili, N., & Yuen, P. (2002). Estimation of error in curvature computation on multi-scale free-form surfaces. International Journal of Computer Vision, 48(2), 131–149.

    Article  Google Scholar 

  • Mokhtarian, F., & Mackworth, A. K. (1992). A theory of multiscale, curvature-based shape representation for planar curves. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(8), 789–805.

    Article  Google Scholar 

  • Nathan, D., Zelic, M., Holden, E.-J. & Wedge, D. (2021). Deformation scale using harmonic curvature analysis: A case study from the Hamersley Province. Journal of Structural Geology, 146, 104302. https://www.sciencedirect.com/science/article/pii/S0191814121000262.

  • Nawroth, A. P. & Peinke, J. (2006). Multiscale reconstruction of time series. Physics Letters A, 360(2), 234–237. https://www.sciencedirect.com/science/article/pii/S0375960106012837.

  • Ortega, O. J., Marrett, R. A., & Laubach, S. E. (2006). A scale-independent approach to fracture intensity and average spacing measurement. AAPG Bulletin, 90(2), 193–208. https://doi.org/10.1306/08250505059

    Article  Google Scholar 

  • Paluszny, A., Matthäi, S. K., & Hohmeyer, M. (2007). Hybrid finite element–finite volume discretization of complex geologic structures and a new simulation workflow demonstrated on fractured rocks. Geofluids, 7(2), 186–208. https://doi.org/10.1111/j.1468-8123.2007.00180.x

    Article  Google Scholar 

  • Passchier, C. W., Trouw, R. A. J., Ribeiro, A. & Paciullo, F. V. P. (2002). Tectonic evolution of the southern Kaoko belt, Namibia. Journal of African Earth Sciences, 35(1), 61–75. https://www.sciencedirect.com/science/article/pii/S0899536202000301.

  • Pearce, M. A., Jones, R. R., Smith, S. A. F., & McCaffrey, K. J. W. (2011). Quantification of fold curvature and fracturing using terrestrial laser scanning. AAPG Bulletin, 95(5), 771–794. https://doi.org/10.1306/11051010026

    Article  Google Scholar 

  • Pearce, M. A., Jones, R. R., Smith, S. A. F., McCaffrey, K. J. W., & Clegg, P. (2006). Numerical analysis of fold curvature using data acquired by high-precision GPS. Journal of Structural Geology, 28, 1640–1646.

    Article  Google Scholar 

  • Pöppelreiter, M., Crookbain, R. A., Sapru, A. K. & Lawrence, M. J. F. (2010). Applications of dipmeter and borehole image data in static models. In M. Pöppelreiter, C. García-Carballido & M. Kraaijveld, (Eds.). Dipmeter and borehole image log technology, American Association of Petroleum Geologists, Memoir. 92, 67–80.

  • Prosser, J., Buck, S., Saddler, S. & Hilton, V. (1999). Methodologies for multi-well sequence analysis using borehole image and dipmeter data. In M. Lovell, G. Williamson & P. Harvey, (Eds.). Borehole imaging: Applications and case histories, Geological Society, London, Special Publications. 159, 91–121.

  • Quinn, D. P., & Ehlmann, B. L. (2019). A PCA-based framework for determining remotely sensed geological surface orientations and their statistical quality. Earth and Space Science, 6(8), 1378–1408. https://doi.org/10.1029/2018EA000416

    Article  Google Scholar 

  • Ragan, D. M. (2009). Structural Geology: An Introduction to geometrical techniques (4th ed., p. 602). Cambridge University Press.

    Book  Google Scholar 

  • Ray, R. G. (1960). Aerial photographs in geologic interpretation and mapping, Geological Survey Professional Paper, 373 (p. 230). United States Government Printing Office.

    Google Scholar 

  • Renaud, O., Starck, J.-L., & Murtagh, F. (2003). Prediction based on a multiscale decomposition. International Journal of Wavelets, Multiresolution and Information Processing, 01(02), 217–232. https://doi.org/10.1142/S0219691303000153

    Article  Google Scholar 

  • Rondeel, H. E., & Storbeck, F. (1978). Errors in geological compass determinations of the attitude of planar structures. Geologische Rundschau, 67(3), 913–919. https://doi.org/10.1007/BF01983244

    Article  Google Scholar 

  • Rucker, R. B. (1977). Geometry, relativity and the fourth dimension (p. 147). Dover Publications Inc.

    Google Scholar 

  • Santangelo, M., Marchesini, I., Mirabella, F., Bucci, F., Cardinali, M. & Guzzetti, F. (2016). From photo-geology to 3D geological models. An open source approach. IV Open source geospatial research & educational symposium, Perugia, October 12–14.

  • Sayidov, A., Aliakbarian, M., & Weibel, R. (2020). Geological map generalization driven by size constraints. ISPRS International Journal of Geo-Information, 9(4), 29.

    Article  Google Scholar 

  • Scheidt, C., & Caers, J. (2008). Representing spatial uncertainty using distances and kernels. Mathematical Geosciences, 41(4), 397. https://doi.org/10.1007/s11004-008-9186-0

    Article  Google Scholar 

  • Smith, Z. D. & Maxwell, D. J. (2021). Constructing vertical measurement logs using UAV-based photogrammetry: Applications for multiscale high-resolution analysis of coarse-grained volcaniclastic stratigraphy. Journal of Volcanology and Geothermal Research, 409, 107122. https://www.sciencedirect.com/science/article/pii/S0377027320303449.

  • Smith, W. H. F., & Wessel, P. (1990). Gridding with continuous curvature splines in tension. Geophysics, 55(3), 293–305. https://doi.org/10.1190/1.1442837

    Article  Google Scholar 

  • Stauffer, M. R. (1988). Fold interference structures and coaptation folds. Tectonophysics, 149(3), 339–343. https://www.sciencedirect.com/science/article/pii/0040195188901825.

  • Stewart, S. A. (2018). Generalization and multiscale structure of subsurface structural maps. Interpretation, 6(4), T1045–T1054. https://doi.org/10.1190/INT-2017-0143.1

    Article  Google Scholar 

  • Stewart, S. A. (2020). Scale dependence of strike and dip in sedimentary basins: Implications for field measurements and integrating subsurface datasets. Journal of Structural Geology, 131, 103943. http://www.sciencedirect.com/science/article/pii/S0191814119302597.

  • Stewart, S. A. & Podolski, R. (1998). Curvature analysis of gridded geological surfaces. In M. P. Coward, T. S. Daltaban & H. Johnson, (Eds.). Structural geology in reservoir characterisation, Special Publication, Geological Society, London. 127, 133–147.

  • Stewart, S. A., Hay, G. J., Rosin, P. L., & Wynn, T. J. (2004). Multiscale structure in sedimentary basins. Basin Research, 16(2), 183–197. https://doi.org/10.1111/j.1365-2117.2004.00228.x

    Article  Google Scholar 

  • Stewart, S. A., & Wynn, T. J. (2000). Mapping spatial variation in rock properties in relationship to spectral curvature. Geology, 28(8), 691–694.

    Article  Google Scholar 

  • Tearpock, D. J., Bischke, R. E., Metzner, D. C., & Brenneke, J. (2020). Applied subsurface geological mapping with structural methods (3rd ed., p. 935). Prentice Hall.

    Google Scholar 

  • Thiele, S. T., Jessell, M. W., Lindsay, M., Ogarko, V., Wellmann, J. F. & Pakyuz-Charrier, E. (2016). The topology of geology 1: Topological analysis. Journal of Structural Geology, 91, 27–38. https://www.sciencedirect.com/science/article/pii/S0191814116301110.

  • Turcotte, D. L. (1989). Fractals in geology and geophysics. Pure and Applied Geophysics, 131, 171–196.

    Article  Google Scholar 

  • Unser, M. (2000). Sampling-50 years after Shannon. Proceedings of the IEEE, 88(4), 569–587.

    Article  Google Scholar 

  • Vakis, A. I., Yastrebov, V. A., et al. (2018). Modeling and simulation in tribology across scales: An overview. Tribology International, 125, 169–199. https://www.sciencedirect.com/science/article/pii/S0301679X18300756.

  • Vermeer, P. L., & Alkemade, J. A. H. (1992). Multiscale segmentation of well logs. Mathematical Geology, 24(1), 27–43. https://doi.org/10.1007/BF00890086

    Article  Google Scholar 

  • Wellmann, F., & Caumon, G. (2018). 3-D Structural geological models: Concepts, methods, and uncertainties. In C. Schmelzbach (Ed.), Advances in Geophysics (Vol. 59, pp. 1–121). Elsevier.

    Google Scholar 

  • Woodcock, N. H. (1976). The accuracy of structural field measurements. The Journal of Geology, 84(3), 350–355. https://doi.org/10.1086/628200

    Article  Google Scholar 

  • Wynn, T. J. & Stewart, S. A. (2003). The role of spectral curvature mapping in characterizing subsurface strain distributions. In M. S. Ameen, (Ed.). Fracture and In-Situ Stress Characterization of Hydrocarbon Reservoirs, Geological Society, London, Special Publications. 209, 145–153.

Download references

Acknowledgements

Release of data relating to this study is limited to the materials presented in this paper. Figure 3 outcrop image is courtesy Alan J. Kaufman. Reviews by three anonymous referees are acknowledged.

Funding

The author declares that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Stewart.

Ethics declarations

Conflict of Interest

The author has no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stewart, S.A. Length Scale as a Fourth Spatial Dimension in Geology and Geophysics. Pure Appl. Geophys. 179, 2817–2830 (2022). https://doi.org/10.1007/s00024-022-03086-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-03086-w

Keywords

Navigation