Skip to main content
Log in

Finite Difference Scheme Based on the Lebedev Grid for Seismic Wave Propagation in Fractured Media

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Fractures in underground media are mostly vertical and orthogonal. Based on the assumption of long wavelengths, fractures can be considered infinitely thin planes embedded in a homogeneous medium. The fracture interface satisfies the conditions of displacement discontinuity and stress continuity, i.e. a linear slip boundary. The finite difference method is typically used to simulate the propagation of seismic waves at the fracture interface. In this study, a new finite difference scheme is proposed based on the velocity-stress equation, which can be used to simulate the propagation of seismic waves in vertical and orthogonal fracture media. The new finite difference scheme more closely resembles the conditions of actual vertical and orthogonal fractures. The Lebedev grid was adopted, and no interpolation was required for the calculation, which improved the accuracy. The numerical simulation of the new finite difference scheme reveals its long-term stability and accuracy. This scheme can be used for the analysis of reservoir fracture delineation. In addition, an explicit slip interface condition and the new finite difference scheme were used to comparatively model fractured media. Virtually identical results were obtained, which verifies the effectiveness of this model. Finally, based on the boundary conditions of linear slip, an improved Zoeppritz equation was established, and the effect of fracture compliance on the reflection and transmission coefficients was studied. This scheme can be used for the analysis of reservoir fracture traps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Material

Data associated with this study can be obtained by contacting the corresponding author.

References

  • Aki, K., & Richards, P. G. (1980). Quantitative seismology: Theory and method. W. H. Freeman and Co.

    Google Scholar 

  • Ali, A., & Jakobsen, M. (2011). Seismic characterization of reservoirs with multiple fracture sets using velocity and attenuation anisotropy data. Journal of Applied Geophysics, 75(3), 590–602.

    Article  Google Scholar 

  • Backus, G. E. (1962). Long-wave elastic anisotropy produced by horizontal layering. Journal of Geophysical Research, 67(11), 4427–4440.

    Article  Google Scholar 

  • Bakulin, A., Grechka, V., & Tsvankin, I. (2000). Estimation of fracture parameters from reflection seismic data-Part I: HTI model due to a single fracture set. Geophysics, 65(6), 1788–1802.

    Article  Google Scholar 

  • Banik, N. C. (1987). An effective anisotropy parameter in transversely isotropic media. Geophysics, 52, 1654–1664.

    Article  Google Scholar 

  • Berenger, J.-P. (1994). A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics, 114, 185–200.

    Article  Google Scholar 

  • Chen, W. (1995). AVO in azimuthally anisotropic media fracture detection using P-wave data and a seismic study of naturally fractured tight gas reservoirs. Stanford University.

  • Coates, R. T., & Schoenberg, M. (1995). Finite-difference modeling of faults and fractures. Geophysics, 60, 1514–1526.

    Article  Google Scholar 

  • Cui, X., (2015). Seismic forward modeling of fractures and fractured media inversion: Ph.D. dissertation, University of Calgary.

  • Cui, X., Lines, L. R., & Krebes, E. S. (2018). Seismic modeling for geological fractures. Geophysical Prospecting, 66, 157–168.

    Article  Google Scholar 

  • Fornberg, B. (1998). Classroom note: Calculation of weights in finite difference formulas. SIAM Review, 40(3), 685–691.

    Article  Google Scholar 

  • Hsu, C.-J., & Schoenberg, M. (1993). Elastic waves through a simulated fracture medium. Geophysics, 58, 964–977.

    Article  Google Scholar 

  • Li, J., Li, H., Jiao, Y., Liu, Y., Xia, X., & Yu, C. (2014). Analysis for oblique wave propagation across filled joints based on thin-layer interface model. Journal of Applied Geophysics, 102, 39–46.

    Article  Google Scholar 

  • Lisitsa, V. V., Lys, E. V., & Vishnevsky, D. M. (2009). Numerical simulation of waves’ propagation in anisotropic elastic media by Lebedev's Grids – RAM Saving and Stable PML, in Proc., 71st EAGE SPE EUROPEC, Amsterdam, Netherlands, June. https://doi.org/10.3997/2214-4609.201400094.

  • Lisitsa, V., Tcheverda, V., & Vishnevsky, D. (2012). Numerical simulation of seismic waves in models with anisotropic formations: Coupling Virieux and Lebedev finite-difference schemes. Computational Geosciences, 16(4), 1135–1152.

    Article  Google Scholar 

  • Minato, S., & Ghose, R. (2016). AVO inversion for a non-welded interface: Estimating compliances of a fluid-filled fracture. Geophysical Journal International, 206, 56–62.

    Article  Google Scholar 

  • Moczo, P., Kristek, J., & Halada, L. (2000). 3D fourth-order staggered-grid finite-difference schemes: Stability and grid dispersion. Bulletin of the Seismological Society of America, 90, 587–603.

    Article  Google Scholar 

  • Moradi, S., & Innanen, K. A. (2019). Azimuthally dependent scattering potentials and full waveform inversion sensitivities in low-loss viscoelastic orthorhombic media. Journal of Geophysics and Engineering, 16(2), 367–388.

    Article  Google Scholar 

  • Rüger (1995). P-wave reflection coefficients for transversely isotropic media with vertical and horizontal axis of symmetry. Expanded Abstracts. Soc Exp; Geophys, 65th Annual International Meeting, 278–281.

  • Saenger, E. H., & Bohlen, T. (2004). Finite-difference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid. Geophysics, 69, 583–591.

    Article  Google Scholar 

  • Saenger, E. H., Gold, N., & Shapiro, S. A. (2000). Modeling the propagation of elastic waves using a modified finite-difference grid. Wave Motion, 31, 77–92.

    Article  Google Scholar 

  • Schoenberg, M. (1980). Elastic wave behavior across linear slip interfaces. Journal of the Acoustical Society of America, 68, 1516–1521.

    Article  Google Scholar 

  • Slawinski, R. A., & Krebes, E. S. (2002a). Finite-difference modeling of SH-wave propagation in nonwelded contact media. Geophysics, 67, 1656–1663.

    Article  Google Scholar 

  • Slawinski, R. A., & Krebes, E. S. (2002b). The homogeneous finite difference formulation of the P-SV wave equation of motion. Studia Geophysica Et Geodaetica, 46, 731–751.

    Article  Google Scholar 

  • Thomsen, L. (1993). Weak anisotropic reflections. In Castagna J. P., & Backus M. (Eds.), Offset dependent reflectivity—Theory and practice of AVO analysis. Tulsa, Oklahoma: Invest Geophysics, No. 8, Society of Exploration Geophysicists, 103–111.

  • Thomsen, L. (1995). Elastic anisotropy due to aligned cracks in porous rock. Geophysical Prospecting, 43(6), 805–829.

    Article  Google Scholar 

  • Virieux, J. (1986). P-SV wave propagation in heterogeneous media: Velocity-stress finite difference method. Geophysics, 51(4), 889–901.

    Article  Google Scholar 

  • Wang, P. (2019). Fluid discrimination based on frequency-dependent AVO inversion with the elastic parameter sensitivity analysis. Geofluids. https://doi.org/10.1155/2019/8750127

    Article  Google Scholar 

  • Wang, H., & Peng, S. P. (2016). Reflection coefficient of qP, qS and SH at a plane boundary between viscoelastic TTI media. Geophysical Journal International, 204(1), 555–568.

    Article  Google Scholar 

  • Wang, K., Peng, S., Lu, Y., & Cui, X. (2019). The velocity-stress finite-difference method with a rotated staggered grid applied to seismic wave propagation in a fractured medium. Geophysics, 85(2), T89–T100.

    Article  Google Scholar 

  • Worthington, M. H., & Hudson, J. A. (2000). Fault properties from seismic Q. Geophysical Journal International, 143, 937–944.

    Article  Google Scholar 

  • Yang, L., & Sen, M. K. (2009). An implicit staggered-grid finite-difference method for seismic modelling. Geophysical Journal International, 179, 459–474.

    Article  Google Scholar 

  • Zoeppritz, K. (1919). Erdbebenwellen VIII B. On the reflection and propagation of seismic waves. Gottinger Nachrichten, I, 66–84.

    Google Scholar 

Download references

Funding

This research was funded by the National Key R&D Program of China (no. 2018YFB0605503), the Fundamental Research Funds for the Central Universities (no. 2021YQDC10), the 111 Project (no. B18052), and the Science and Technology Innovation Fund for College students of the State Key Laboratory of Coal Resources and Safe Mining (no. SKLCRSM20DC04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Wang.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

To verify the effectiveness of the new scheme, we compared the results obtained with the new scheme with those of the explicit application of boundary conditions. Explicit boundary conditions are difficult to achieve in the numerical simulation of orthogonal fractured media. However, it is relatively easy to implement explicit boundary conditions for a single vertical or horizontal fracture. In this appendix, we present the derivation of the explicit boundary conditions.

In two dimensions, the elastic (P-SV) wave equation in an isotropic homogeneous medium can be written as (Aki & Richards, 1980):

$$\frac{{\partial^{2} {\mathbf{u}}}}{{\partial t^{2} }} = {\mathbf{A}}\frac{{\partial^{2} {\mathbf{u}}}}{{\partial x^{2} }} + {\mathbf{B}}\frac{{\partial^{2} {\mathbf{u}}}}{\partial x\partial z} + {\mathbf{C}}\frac{{\partial^{2} {\mathbf{u}}}}{{\partial z^{2} }},$$
(11)

where \({\mathbf{u}} = \left( {\begin{array}{*{20}c} {u_{x} } \\ {u_{z} } \\ \end{array} } \right)\); \({\mathbf{A}} = \left( {\begin{array}{*{20}c} {\alpha^{2} } & 0 \\ 0 & {\beta^{2} } \\ \end{array} } \right)\); \({\mathbf{B}} = \left( {\begin{array}{*{20}c} 0 & {\alpha^{2} - \beta^{2} } \\ {\alpha^{2} - \beta^{2} } & 0 \\ \end{array} } \right)\); \({\mathbf{C}} = \left( {\begin{array}{*{20}c} {\beta^{2} } & 0 \\ 0 & {\alpha^{2} } \\ \end{array} } \right)\); \(u_{x}\) and \(u_{z}\) represent the normal and tangential displacements, respectively; \(\alpha = \sqrt {\frac{\lambda + 2\mu }{\rho }}\) and \(\beta = \sqrt {\frac{\mu }{\rho }}\) are the P- and S-wave velocities, respectively; \(\lambda\) and \(\mu\) are the Lamé coefficients; and \(\rho\) is the density of the medium.

According to \(\frac{{\partial^{2} {\mathbf{u}}}}{{\partial t^{2} }} = \frac{{\partial {\mathbf{v}}}}{\partial t}\) and \({\mathbf{v}} = \left( {\begin{array}{*{20}c} {v_{x} } \\ {v_{z} } \\ \end{array} } \right)\), where \(v_{x}\) and \(v_{z}\) represent the normal and tangential velocities, respectively, Eq. (11) can be expanded as follows:

$$\frac{{\partial v_{x} }}{\partial t} = \frac{\lambda + 2\mu }{\rho }\frac{{\partial^{2} u_{x} }}{{\partial x^{2} }} + \frac{\lambda + \mu }{\rho }\frac{{\partial^{2} u_{z} }}{\partial x\partial z} + \frac{\mu }{\rho }\frac{{\partial^{2} u_{x} }}{{\partial z^{2} }},$$
(12)
$$\frac{{\partial v_{z} }}{\partial t} = \frac{\mu }{\rho }\frac{{\partial^{2} u_{z} }}{{\partial x^{2} }} + \frac{\lambda + \mu }{\rho }\frac{{\partial^{2} u_{x} }}{\partial x\partial z} + \frac{\lambda + 2\mu }{\rho }\frac{{\partial^{2} u_{z} }}{{\partial z^{2} }},$$
(13)

We considered the following linear slip boundary conditions of vertical fracture:

$$\Delta u_{x} = S_{N} \sigma_{xx} , \, \Delta u_{z} = S_{T} \sigma_{xz} ,$$
(14)

Equation (14) can be rewritten as:

$$\Delta u_{x} {/}\Delta x = \partial u_{x} /\partial x = \frac{{S_{N} }}{\Delta x}\sigma_{xx} ,\,\Delta u_{z} {/}\Delta x = \partial u_{z} /\partial x = \frac{{S_{T} }}{\Delta x}\sigma_{xz} ,$$
(15)

Based on the application of the Navier and Cauchy equations to an isotropic background medium, we obtained:

$$\left\{ \begin{gathered} \sigma_{zz} = \lambda \frac{{\partial u_{x} }}{\partial x} + (\lambda + 2\mu )\frac{{\partial u_{z} }}{\partial z} \hfill \\ \sigma_{xx} = (\lambda + 2\mu )\frac{{\partial u_{x} }}{\partial x} + \lambda \frac{{\partial u_{z} }}{\partial z} \hfill \\ \sigma_{xz} = \mu \left( {\frac{{\partial u_{x} }}{\partial z} + \frac{{\partial u_{z} }}{\partial x}} \right) \hfill \\ \end{gathered} \right.,$$
(16)

According to Baku’s theory, the fractured medium is composed of isotropic background and fractured media.

$$\partial u_{x} {/}\partial x = \left( {\partial u_{x} {/}\partial x} \right)_{{{\text{iso}}}} + \left( {\partial u_{x} {/}\partial x} \right)_{{{\text{fracture}}}} ,$$
$$\partial u_{z} {/}\partial x = \left( {\partial u_{z} {/}\partial x} \right)_{{{\text{iso}}}} + \left( {\partial u_{z} {/}\partial x} \right)_{{{\text{fracture}}}} ,$$
(17)

The subscript \(iso\) represents the isotropic background medium. Based on substituting Eqs. (15) and (16) into (17), we obtained:

$$\left\{ \begin{gathered} \frac{{\partial u_{x} }}{\partial x} = \left( {\frac{\lambda + 2\mu }{{4\mu (\lambda + \mu )}} + \frac{{S_{N} }}{\Delta x}} \right)\sigma_{xx} + \frac{ - \lambda }{{4\mu (\lambda + \mu )}}\sigma_{zz} \hfill \\ \frac{{\partial u_{z} }}{\partial z} = \frac{ - \lambda }{{4\mu (\lambda + \mu )}}\sigma_{xx} + \frac{\lambda + 2\mu }{{4\mu (\lambda + \mu )}}\sigma_{zz} \hfill \\ \frac{{\partial u_{x} }}{\partial z} + \frac{{\partial u_{z} }}{\partial x} = \left( {\frac{1}{\mu } + \frac{{S_{T} }}{\Delta x}} \right)\sigma_{xz} \hfill \\ \end{gathered} \right.,$$
(18)

By substituting Eq. (18) into Eqs. (12) and (13), we obtained the first derivative of the velocity in vertical fractured media with respect to time:

$$\frac{{\partial v_{x} }}{\partial t} = \frac{1}{\rho }\left( {1 + \frac{{\left( {\lambda + 2\mu } \right)S_{N} }}{\Delta x}} \right)\frac{{\partial \sigma_{xx} }}{\partial x} + \frac{1}{\rho }\left( {1 + \frac{{\mu S_{T} }}{\Delta x}} \right)\frac{{\partial \sigma_{xz} }}{\partial z},$$
(19)
$$\frac{{\partial v_{z} }}{\partial t} = \frac{1}{\rho }\left( {1 + \frac{{\lambda S_{N} }}{\Delta x}} \right)\frac{{\partial \sigma_{xx} }}{\partial z} + \frac{1}{\rho }\left( {1 + \frac{{\mu S_{T} }}{\Delta x}} \right)\frac{{\partial \sigma_{xz} }}{\partial x},$$
(20)

Taking the derivative of Eq. (18) with respect to time \(t\), the expression of the first derivative of stress in the vertical fracture medium with respect to time was obtained:

$$\left\{ \begin{gathered} \frac{{\partial \sigma_{zz} }}{\partial t} = \lambda \frac{{\partial v_{x} }}{\partial x} + (\lambda + 2\mu )\frac{{\partial v_{z} }}{\partial z} \hfill \\ \frac{{\partial \sigma_{xx} }}{\partial t} = (\lambda + 2\mu )\frac{{\partial v_{x} }}{\partial x} + \lambda \frac{{\partial v_{z} }}{\partial z} \hfill \\ \frac{{\partial \sigma_{xz} }}{\partial t} = \mu \left( {\frac{{\partial v_{x} }}{\partial z} + \frac{{\partial v_{z} }}{\partial x}} \right) \hfill \\ \end{gathered} \right.,$$
(21)

Equations (19), (20), and (21) were combined to obtain the first-order velocity-stress equations for vertical fractured media:

$$\left\{ \begin{gathered} \frac{{\partial v_{x} }}{\partial t} = \frac{1}{\rho }\left( {1 + \frac{{\left( {\lambda + 2\mu } \right)S_{N} }}{\Delta x}} \right)\frac{{\partial \sigma_{xx} }}{\partial x} + \frac{1}{\rho }\left( {1 + \frac{{\mu S_{T} }}{\Delta x}} \right)\frac{{\partial \sigma_{xz} }}{\partial z} \hfill \\ \frac{{\partial v_{z} }}{\partial t} = \frac{1}{\rho }\left( {1 + \frac{{\lambda S_{N} }}{\Delta x}} \right)\frac{{\partial \sigma_{zz} }}{\partial z} + \frac{1}{\rho }\left( {1 + \frac{{\mu S_{T} }}{\Delta x}} \right)\frac{{\partial \sigma_{xz} }}{\partial x} \hfill \\ \frac{{\partial \sigma_{zz} }}{\partial t} = \lambda \frac{{\partial v_{x} }}{\partial x} + (\lambda + 2\mu )\frac{{\partial v_{z} }}{\partial z} \hfill \\ \frac{{\partial \sigma_{xx} }}{\partial t} = (\lambda + 2\mu )\frac{{\partial v_{x} }}{\partial x} + \lambda \frac{{\partial v_{z} }}{\partial z} \hfill \\ \frac{{\partial \sigma_{xz} }}{\partial t} = \mu \left( {\frac{{\partial v_{x} }}{\partial z} + \frac{{\partial v_{z} }}{\partial x}} \right) \hfill \\ \end{gathered} \right.,$$
(22)

Equation (22) is applicable to vertical fractured media. When \(S_{N} = S_{T} = 0\), Eq. (22) is the isotropic first-order velocity–stress equation. Equation (14) was changed to \(\Delta u_{x} = S_{T} \sigma_{xz}\) and \(\Delta u_{z} = S_{N} \sigma_{zz}\); after the derivation, it can be applied to horizontal fractured media.

$$\left\{ \begin{gathered} \frac{{\partial v_{x} }}{\partial t} = \frac{1}{\rho }\left( {1 + \frac{{\left( {\lambda + 2\mu } \right)S_{N} }}{\Delta x}} \right)\frac{\Delta r}{{2\Delta x}}\left( {\frac{{\partial \sigma_{xx} }}{{\partial \overline{z}}} + \frac{{\partial \sigma_{xx} }}{{\partial \overline{x}}}} \right) + \frac{1}{\rho }\left( {1 + \frac{{\mu S_{T} }}{\Delta x}} \right)\frac{\Delta r}{{2\Delta z}}\left( {\frac{{\partial \sigma_{xz} }}{{\partial \overline{z}}} - \frac{{\partial \sigma_{xz} }}{{\partial \overline{x}}}} \right) \hfill \\ \frac{{\partial v_{z} }}{\partial t} = \frac{1}{\rho }\left( {1 + \frac{{\lambda S_{N} }}{\Delta x}} \right)\frac{\Delta r}{{2\Delta z}}\left( {\frac{{\partial \sigma_{zz} }}{{\partial \overline{z}}} - \frac{{\partial \sigma_{zz} }}{{\partial \overline{x}}}} \right) + \frac{1}{\rho }\left( {1 + \frac{{\mu S_{T} }}{\Delta x}} \right)\frac{\Delta r}{{2\Delta x}}\left( {\frac{{\partial \sigma_{xz} }}{{\partial \overline{z}}} + \frac{{\partial \sigma_{xz} }}{{\partial \overline{x}}}} \right) \hfill \\ \frac{{\partial \sigma_{zz} }}{\partial t} = \lambda \frac{\Delta r}{{2\Delta x}}\left( {\frac{{\partial v_{x} }}{{\partial \overline{z}}} + \frac{{\partial v_{x} }}{{\partial \overline{x}}}} \right) + (\lambda + 2\mu )\frac{\Delta r}{{2\Delta z}}\left( {\frac{{\partial v_{z} }}{{\partial \overline{z}}} - \frac{{\partial v_{z} }}{{\partial \overline{x}}}} \right) \hfill \\ \frac{{\partial \sigma_{xx} }}{\partial t} = (\lambda + 2\mu )\frac{\Delta r}{{2\Delta x}}\left( {\frac{{\partial v_{x} }}{{\partial \overline{z}}} + \frac{{\partial v_{x} }}{{\partial \overline{x}}}} \right) + \lambda \frac{\Delta r}{{2\Delta z}}\left( {\frac{{\partial v_{z} }}{{\partial \overline{z}}} - \frac{{\partial v_{z} }}{{\partial \overline{x}}}} \right) \hfill \\ \frac{{\partial \sigma_{x} }}{\partial t} = \mu \left( {\frac{\Delta r}{{2\Delta z}}\left( {\frac{{\partial v_{x} }}{{\partial \overline{z}}} - \frac{{\partial v_{x} }}{{\partial \overline{x}}}} \right) + \frac{\Delta r}{{2\Delta x}}\left( {\frac{{\partial v_{z} }}{{\partial \overline{z}}} + \frac{{\partial v_{z} }}{{\partial \overline{x}}}} \right)} \right) \hfill \\ \end{gathered} \right..$$
(23)

Appendix B

Six types of waves are generated in fractured media when P-waves from the background media are incident on the vertical fracture interface at an angle \(\alpha\) including incident P-waves, reflected P-waves, reflected S-waves, transmitted P-waves, and transmitted S-waves (Fig. 

Fig. 10
figure 10

Reflection and transmission on fracture interface

10).

Their plane wave expression potentials are as follows:

$$\begin{gathered} \varphi_{{p_{1} }} = A_{p1} \exp i\left[ {\omega t - l_{1} \left( {x\cos \alpha + z\sin \alpha } \right)} \right] \, \hfill \\ \varphi_{{p_{11} }} = A_{{p_{11} }} \exp i\left[ {\omega t - l_{11} \left( { - x\cos \alpha_{11} + z\sin \alpha_{11} } \right)} \right] \, \hfill \\ \psi_{{s_{1} }} = A_{{s_{1} }} \exp i\left[ {\omega t - l_{s1} \left( { - x\cos \beta_{1} + z\sin \beta_{1} } \right)} \right] \, \hfill \\ \varphi_{{p_{21} }} = A_{{p_{21} }} \exp i\left[ {\omega t - l_{21} \left( {x\cos \alpha_{21} + z\sin \alpha_{21} } \right)} \right] \, \hfill \\ \psi_{{s_{2} }} = A_{{s_{2} }} \exp i\left[ {\omega t - l_{s2} \left( {x\cos \beta_{2} + z\sin \beta_{2} } \right)} \right]{, } \hfill \\ \end{gathered}$$
(24)

where \(\varphi\) represents the P-wave potentials and \(\psi\) represents the S-wave potentials. \(A\) represents the amplitude of the displacement caused by the incident wave, \(\omega\) represents the circular frequency, \(l\) represents the circular wave number, \(x\) and \(z\) are the spatial coordinates, and \(\alpha\) and \(\beta\) are the incident angles.

The boundary conditions at the interface are displacement discontinuity and stress continuity. Therefore, the boundary conditions of the vertically fractured media can be written as:

$$\left\{ \begin{gathered} \left[ {u_{x} } \right]^{ + } = \left[ {u_{x} } \right]^{ - } + S_{N} \sigma_{xx} \hfill \\ \left[ {u_{z} } \right]^{ + } = \left[ {u_{z} } \right]^{ - } + S_{T} \sigma_{xz} \hfill \\ \left[ {\sigma_{xx} } \right]^{ + } = \left[ {\sigma_{xx} } \right]^{ - } \hfill \\ \left[ {\sigma_{xz} } \right]^{ + } = \left[ {\sigma_{xz} } \right]^{ - } \hfill \\ \end{gathered} \right.,$$
(25)

where \(u_{x}\) and \(u_{z}\) represent the normal and tangential displacement, respectively.

In the two-dimensional plane, the displacement of the particle vibration during the propagation of the seismic wave can be expressed as:

$$\left\{ {\begin{array}{*{20}c} {u_{x} = \frac{\partial \varphi }{{\partial x}} - \frac{\partial \psi }{{\partial z}}} \\ {u_{z} = \frac{\partial \varphi }{{\partial z}} + \frac{\partial \psi }{{\partial x}}} \\ \end{array} } \right.,$$
(26)

In the two-dimensional case, we obtained the following equations according to the correlation between stress and strain described by Hooke’s law:

$$\sigma_{xx} = \lambda \frac{1}{{v_{p}^{2} }}\frac{{\partial^{2} \varphi }}{{\partial t^{2} }} + 2\mu \left( {\frac{{\partial^{2} \varphi }}{{\partial x^{2} }} - \frac{{\partial^{2} \psi }}{\partial x\partial z}} \right),$$
(27)
$$\sigma_{zx} = \mu e_{zx} = \mu \left( {\frac{{\partial u_{z} }}{\partial x} + \frac{{\partial u_{x} }}{\partial z}} \right) = \mu \left( {2\frac{{\partial^{2} \varphi }}{\partial x\partial z} + \frac{{\partial^{2} \psi }}{{\partial x^{2} }} - \frac{{\partial^{2} \psi }}{{\partial z^{2} }}} \right),$$
(28)

Subsequently, we analysed the four boundary conditions separately. Based on the tangential displacement discontinuity \(\left[ {u_{x} } \right]^{ + } = \left[ {u_{x} } \right]^{ - } + S_{N} \sigma_{xx}\) and Eqs. (24)–(28), we obtained:

$$\begin{gathered} \frac{{A_{{p_{11} }} }}{{A_{p1} }}\frac{{v_{p1} }}{{v_{{p_{11} }} }}\cos \alpha_{11} + \frac{{A_{{s_{1} }} }}{{A_{p1} }}\frac{{v_{p1} }}{{v_{{s_{1} }} }}\sin \beta_{1} + \frac{{A_{{p_{21} }} }}{{A_{p1} }}\frac{{v_{p1} }}{{v_{{p_{21} }} }}\left( \begin{gathered} \cos \alpha_{21} - iS_{N} \lambda l_{21} \hfill \\ - iS_{N} 2\mu l_{21} \cos^{2} \alpha_{21} \hfill \\ \end{gathered} \right) \hfill \\ - \frac{{A_{{s_{2} }} }}{{A_{p1} }}\frac{{v_{p1} }}{{v_{{s_{2} }} }}\left( {\sin \beta_{2} + iS_{N} \mu l_{s2} \sin 2\beta_{2} \, } \right) = \cos \alpha , \hfill \\ \end{gathered}$$
(29)

Based on the discontinuity of the normal displacement \(\left[ {u_{z} } \right]^{ + } = \left[ {u_{z} } \right]^{ - } + S_{T} \sigma_{xz}\), we obtained:

$$\begin{gathered} \frac{{A_{{p_{11} }} }}{{A_{p1} }}\frac{{v_{p1} }}{{v_{{p_{11} }} }}\sin \alpha_{11} - \frac{{A_{{s_{1} }} }}{{A_{p1} }}\frac{{v_{p1} }}{{v_{{s_{1} }} }}\cos \beta_{1} - \frac{{A_{{p_{21} }} }}{{A_{p1} }}\frac{{v_{p1} }}{{v_{{p_{21} }} }}\left( {\sin \alpha_{21} - iS_{T} \mu l_{21} \sin 2\alpha_{21} } \right) \hfill \\ - \frac{{A_{{s_{2} }} }}{{A_{p1} }}\frac{{v_{p1} }}{{v_{{s_{2} }} }}\left( {\cos \beta_{2} - iS_{T} \mu l_{s2} \cos 2\beta_{2} } \right) = - \sin \alpha , \hfill \\ \end{gathered}$$
(30)

Based on the normal stress continuity \(\left[ {\sigma_{xx} } \right]^{ + } = \left[ {\sigma_{xx} } \right]^{ - }\), we obtained:

$$\begin{gathered} \frac{{A_{{p_{11} }} }}{{A_{p1} }}\frac{{v_{p1}^{2} }}{{v_{p11}^{2} }}\left( {2\mu \cos^{2} \alpha_{11} + v_{p11}^{2} } \right){ + }\frac{{A_{{s_{1} }} }}{{A_{p1} }}\frac{{v_{p1}^{2} }}{{v_{s1}^{2} }}\mu \sin 2\beta_{1} - \frac{{A_{{p_{21} }} }}{{A_{p1} }}\frac{{v_{p1}^{2} }}{{v_{p21}^{2} }}\left( {2\mu \cos^{2} \alpha_{21} + \lambda } \right) \hfill \\ + \frac{{A_{{s_{2} }} }}{{A_{p1} }}\frac{{v_{p1}^{2} }}{{v_{s2}^{2} }}\mu \sin 2\beta_{2} = - \left( {\lambda + \, 2\mu \cos^{2} \alpha } \right), \hfill \\ \end{gathered}$$
(31)

According to the tangential stress continuity \(\left[ {\sigma_{xz} } \right]^{ + } = \left[ {\sigma_{xz} } \right]^{ - }\), we obtained:

$$\begin{gathered} \frac{{A_{{p_{11} }} }}{{A_{p1} }}\frac{{v_{p1}^{2} }}{{v_{p11}^{2} }}\sin 2\alpha_{11} - \frac{{A_{{s_{1} }} }}{{A_{p1} }}\frac{{v_{p1}^{2} }}{{v_{s1}^{2} }}\cos 2\beta_{1} + \frac{{\rho_{2} }}{{\rho_{1} }}\frac{{v_{s2}^{2} }}{{v_{s1}^{2} }}\frac{{A_{{p_{21} }} }}{{A_{p1} }}\frac{{v_{p1}^{2} }}{{v_{p21}^{2} }}\sin 2\alpha_{21} \hfill \\ + \frac{{\rho_{2} }}{{\rho_{1} }}\frac{{v_{s2}^{2} }}{{v_{s1}^{2} }}\frac{{A_{{s_{2} }} }}{{A_{p1} }}\frac{{v_{p1}^{2} }}{{v_{s2}^{2} }}\cos 2\beta_{2} = \sin 2\alpha , \hfill \\ \end{gathered}$$
(32)

The reflection coefficient of the P-wave, reflection coefficient of the S-wave, transmission coefficient of the P-wave, and transmission coefficient of the S-wave are defined as:

$$R_{{p_{11} }} = \frac{{A_{{p_{11} }} }}{{A_{{p_{1} }} }}\frac{{v_{{p_{1} }} }}{{v_{{p_{11} }} }},\,R_{{s_{1} }} = \frac{{A_{{s_{1} }} }}{{A_{{p_{1} }} }}\frac{{v_{{p_{1} }} }}{{v_{{s_{1} }} }}{,}\, \, T_{{p_{21} }} = \frac{{A_{{p_{21} }} }}{{A_{{p_{1} }} }}\frac{{v_{{p_{1} }} }}{{v_{{p_{21} }} }}{,}\, \, T_{{s_{2} }} = \frac{{A_{{s_{2} }} }}{{A_{{p_{1} }} }}\frac{{v_{{p_{1} }} }}{{v_{{s_{2} }} }},$$
(33)

In addition, \(v_{{p_{1} }} = v_{{p_{11} }} = v_{{p_{21} }}\), \(v_{{s_{1} }} = v_{{s_{2} }}\), and \(\rho_{1} = \rho_{2}\). By synthesising Eqs. (30)–(33), we obtained Eq. (10).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Peng, S., Lu, Y. et al. Finite Difference Scheme Based on the Lebedev Grid for Seismic Wave Propagation in Fractured Media. Pure Appl. Geophys. 179, 2619–2636 (2022). https://doi.org/10.1007/s00024-022-03080-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-03080-2

Keywords

Navigation