Skip to main content

Mathematical Modeling of Spatial Wave Processes in Fractured Seismic Media

  • Conference paper
  • First Online:
Smart Modelling For Engineering Systems

Abstract

This chapter is devoted to the study of the propagation of elastic waves in a fractured seismic medium using methods of mathematical modeling. The obtained results are compared with the results of physical modeling on similar models. For mathematical modeling, a grid-characteristic method is used with 1-3-order hybrid schemes with approximation on unstructured triangular meshes (2D case) and tetrahedral meshes (3D case). Such meshes make it possible to specify inhomogeneities (fractures) of various complex shapes and spatial orientations. There is a description of developed mathematical models of fractures, which can be used for numerical solution of exploration seismology problems. The base of developed models is the concept of infinitely thin fracture, which aperture does not influence on wave processes in fracture area. These fractures are represented by boundaries and contact boundaries with different conditions on the contact and boundary surfaces. Such approach significantly reduces the computational costs due to the absence of the mesh definition inside the fracture. On the other side, it lets to state the fractures discretely in integration domain. Therefore, one can observe qualitative new effects such as diffractive waves forming and multiphase wave front due to multiple reflections between surfaces of neighbor fractures. These effects are not available to observe using effective models of fractures, actively applied in computational seismology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Khokhlov, N., Stognii, P.: Novel approach to modeling the seismic waves in the areas with complex fractured geological structures. Minerals 10(2), 122.1–122.17 (2020)

    Google Scholar 

  2. Nikitin, I.S., Burago, N.G., Golubev, V.I., Nikitin, A.D.: Methods for calculating the dynamics of layered and block media with nonlinear contact conditions. In: Jain, L.C., Favorskaya, M.N., Nikitin, I.S., Reviznikov, D.L. (eds.) Advances in Theory and Practice of Computational Mechanics. SIST, vol. 173, pp. 171–183. Springer, Singapore (2020)

    Chapter  Google Scholar 

  3. Cui, X., Lines, L.R., Krebes, E.S.: Seismic modelling for geological fractures. Geophys. Prospect. 66, 157–168 (2018)

    Article  Google Scholar 

  4. Chentsov, E.P., Sadovskii, V.M., Sadovskaya, O.V.: Modeling of wave processes in a blocky medium with fluid-saturated porous interlayers. AIP Conf. Proc. 1895, 080002.1–080002.10 (2017)

    Google Scholar 

  5. Leviant, V.B., Petrov, I.B., Kvasov, I.E.: Numerical modeling of seismic response from subvertical macrofractures as possible fluid conduits. Seismic Technol. 4, 41–61 (2011)

    Google Scholar 

  6. Bakulin, A., Grechka, V., Karaev, N., Anisimov, A., Kozlov, E.: Physical modeling and theoretical studies of seismic reflections from a fault zone. SEG Technical Program Expanded Abstracts, pp. 1674–1677 (2004)

    Google Scholar 

  7. Willis, M.E., Burns, D.R., Rao, R., Minsley, B., Toksöz, M.N., Vetri, L.: Spatial orientation and distribution of reservoir fractures from scattered seismic energy. Geophysics 71(5), O43–O51 (2006)

    Article  Google Scholar 

  8. Leviant, V.B., Petrov, I.B., Muratov, M.V.: Numerical simulation of wave responses from subvertical macrofractures system. Seismic Technol. 1, 5–21 (2012)

    Google Scholar 

  9. Biryukov, V.A., Muratov, M.V., Petrov, I.B., Sannikov, A.V., Favorskaya, A.V.: Application of the grid-characteristic method on unstructured tetrahedral meshes to the solution of direct problems in seismic exploration of fractured layers. Comput. Math. Math. Phys. 55(10), 1733–1742 (2015)

    Article  MathSciNet  Google Scholar 

  10. Petrov, I.B., Muratov, M.V.: Application of the grid-characteristic method to the solution of direct problems in the seismic exploration of fractured formations (review). Math. Models Comput. Simul. 11, 924–939 (2019)

    Article  MathSciNet  Google Scholar 

  11. Magomedov, K.M., Kholodov, A.S.: Grid-Characteristic Numerical Methods. Nauka, Moscow (1988). (in Russian)

    MATH  Google Scholar 

  12. Petrov, I.B., Kholodov, A.S.: Numerical study of some dynamic problems of the mechanics of a deformable rigid body by the mesh-characteristic method. Comput. Math. Math. Phys. 24(3), 61–73 (1984)

    Article  Google Scholar 

  13. Aurenhammer, F.: Voronoi diagrams—a study of fundamental geometric data structure. ACM Comput. Surv. 23, 345–405 (1991)

    Article  Google Scholar 

  14. Edelsbrunner, H.: Geometry and Topology for Mesh Generation. Cambridge University Press (2006)

    Google Scholar 

  15. Novatskii, V.K.: Elasticity theory. Izd. Mir, Moscow (1975). (in Russian)

    Google Scholar 

  16. Favorskaya, A.V., Breus, A.V., Galitskii, B.V.: Application of the grid-characteristic method to the seismic isolation model. In: Petrov, I.B., Favorskaya, A.V., Favorskaya, M.N., Simakov, S.S., Jain, L.C. (eds.) Smart Modeling for Engineering Systems. GCM50 2018. SIST, vol. 133, pp. 167–181. Springer, Cham (2019)

    Google Scholar 

  17. Muratov, M.V., Petrov, I.B.: Application of mathematical fracture models to simulation of exploration seismology problems by the grid-characteristic method. Comput. Res. Model. 11(6), 1077–1082 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Foundation of Basic Research, project no. 19-01-00432.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maksim V. Muratov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Muratov, M.V., Derbysheva, T.N. (2021). Mathematical Modeling of Spatial Wave Processes in Fractured Seismic Media. In: Favorskaya, M.N., Favorskaya, A.V., Petrov, I.B., Jain, L.C. (eds) Smart Modelling For Engineering Systems. Smart Innovation, Systems and Technologies, vol 214. Springer, Singapore. https://doi.org/10.1007/978-981-33-4709-0_10

Download citation

Publish with us

Policies and ethics