Skip to main content
Log in

Stochastic Source Modelling and Tsunami Hazard Analysis of the 2012 Mw7.8 Haida Gwaii Earthquake

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The 2012 Mw7.8 Haida Gwaii earthquake triggered a tsunami that highlighted the importance of tsunami hazard assessments along Canada’s Pacific coast. Stochastic source modelling offers a valuable method to assess future tsunami hazard and has not been previously performed for this region. The stochastic source models characterize the variability of earthquake ruptures by accounting for uncertain fault geometry and slip heterogeneity, allowing the consideration a wide range of possible tsunami scenarios. The model predictions are constrained by observational data and past source inversion studies. A total of 1500 stochastic tsunami models are generated using the stochastic source modelling method to assess tsunami hazard via Monte Carlo tsunami simulations of the target region and conduct sensitivity analyses of tsunami height variability. 500 stochastic models are synthesized by reflecting the key features of the observed tsunami wave profiles as well as ground deformations during the 2012 event, whereas 1,000 stochastic models are generated to represent future potential rupture scenarios of Mw7.7 to Mw8.1 in the Haida Gwaii region. The comparison of the offshore tsunami data based on the 2012 observations and the stochastic tsunami simulations matched reasonably well, while the comparison of the run-up measurements with the simulation results showed that the latter is generally smaller than the former. To improve the tsunami simulation, accurate bathymetry and elevation data are necessary. Since the prospective evaluations of regional tsunami hazards using the stochastic source models capture both moderate and extreme tsunami hazard scenarios, the developed models can be used to perform future probabilistic tsunami hazard analysis in this region to promote better-informed risk management decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

source models for the 2012 Haida Gwaii earthquake: a Shao and Ji (2012), b Wei (2012), c Lay et al. (2013), d Fine et al. (2015), e Gusman et al. (2016), and f Hayes (2017). The reported rake parameters are the representative values

Fig. 3

source parameters based on the existing source models for the 2012 Haida Gwaii earthquake and simulated parameters for the refined 2012 Mw7.8 stochastic source models with scaling relationships by Goda et al. (2016): a length, b along-strike correlation length, c mean slip, d width, e along-dip correlation length, and f maximum slip. The existing source models are shown in Fig. 2

Fig. 4

source models for the 2012 Haida Gwaii earthquake. The observed deformation data are also shown in Fig. 1. The six source models are shown in Fig. 2

Fig. 5
Fig. 6

source models for the refined 2012 Mw7.8 scenario, d average source model for the refined 2012 Mw7.8 scenario, e average source model for the prospective Mw7.7–7.9 scenario, and f average source model for the prospective Mw7.9–8.1 scenario

Fig. 7
Fig. 8

source models, and b comparison of observed and simulated wave profiles at the Queen Charlotte station. For (b), the observed wave is processed in the same way as mentioned in Sect. 2.1, whereas the simulated tsunami wave profiles have temporal resolution of 1 s

Fig. 9

source models for the refined 2012 Mw7.8 scenario and based on the Gusman et al. (2016) source model: a Henslung Cove, b DART 46,419, c Barkley Canyon, and d La Push. The simulated tsunami wave profiles have temporal resolution of 1 s

Fig. 10

source models (286, 350, and 369; a, b, and d, respectively) and based on the Gusman et al. (2016) source model (e), (c) observed run-up heights, and (f) maximum wave height along the Haida Gwaii coast for the top 20 refined 2012 Mw7.8 stochastic source models and the Gusman et al. (2016) source model. The earthquake slip distributions of the three stochastic models for the results displayed in (a), (b), and (d) are shown in Fig. 6a–c. The wave height is defined with respect to the mean sea level

Fig. 11

source models: a, b source models 286, c, d source model 350, and e, f source model 369. The water depths at P1, P2, and P3 are 9.4 m, 9.0 m, and 15.0 m, respectively. For b, d, f), the simulated tsunami wave profiles have temporal resolution of 0.1 s

Fig. 12

source models and b 500 Mw7.9–8.1 source models. The median, 10th, and 90th percentiles of the simulated maximum wave heights are shown in red (solid and broken curves)

Similar content being viewed by others

References

  • Barth, S., Geertsema, M., Bevington, A. R., Bird, A. L., Clague, J. J., Millard, T., Bobrowsky, P. T., Hasler, A., & Liu, H. (2020). Landslide response to the 27 October 2012 earthquake (MW 7.8), southern Haida Gwaii, British Columbia, Canada. Landslides, 17, 517–526.

    Article  Google Scholar 

  • Behrens, J., Løvholt, F., Jalayer, F., Lorito, S., Salgado-Gálvez, M. A., Sørensen, M., Abadie, S., Aguirre-Ayerbe, I., Aniel-Quiroga, I., Babeyko, A., & Baiguera, M. (2021). Probabilistic tsunami hazard and risk analysis: A review of research gaps. Frontiers in Earth Science, 9, 114.

    Article  Google Scholar 

  • Bernard, E., & Titov, V. (2015). Evolution of tsunami warning systems and products. Philosophical Transactions of the Royal Society a: Mathematical, Physical and Engineering Sciences, 373, 20140371.

    Article  Google Scholar 

  • Bird, A. L., & Lamontagne, M. (2015). Impacts of the October 2012 magnitude 7.8 earthquake near Haida Gwaii, Canada. Bulletin of the Seismological Society of America, 105, 1178–1192.

    Article  Google Scholar 

  • Brothers, D. S., Miller, N. C., Barrie, J. V., Haeussler, P. J., Greene, H. G., Andrews, O., Zielke, B. D., Watt, J., & Dartnell, P. (2020). Plate boundary localization, slip-rates and rupture segmentation of the queen charlotte fault based on submarine tectonic geomorphology. Earth and Planetary Science Letters, 530, 115882.

    Article  Google Scholar 

  • Cassidy, J. F., Rogers, G. C., & Hyndman, R. D. (2014). An overview of the 28 October 2012 Mw 7.7 earthquake in Haida Gwaii, Canada: A tsunamigenic thrust event along a predominantly strike-slip margin. Pure and Applied Geophysics, 171, 3457–3465.

    Article  Google Scholar 

  • Dao, M. H., & Tkalich, P. (2007). Tsunami propagation modelling - a sensitivity study. Natural Hazards and Earth System Sciences, 7, 741–754.

    Article  Google Scholar 

  • Davies, G., Horspool, N., & Miller, V. (2015). Tsunami inundation from heterogeneous earthquake slip distributions: Evaluation of synthetic source models. Journal Geophysical Research: Solid Earth, 120, 6431–6451.

    Article  Google Scholar 

  • DeMets, C., Gordon, R. G., & Argus, D. F. (2010). Geologically current plate motions. Geophysical Journal International, 181, 1–80.

    Article  Google Scholar 

  • Fine, I. V., Cherniawsky, J. Y., Thomson, R. E., Rabinovich, A. B., & Krassovski, M. V. (2015). Observations and numerical modeling of the 2012 Haida Gwaii tsunami off the coast of British Columbia. Pure and Applied Geophysics, 172, 699–718.

    Article  Google Scholar 

  • Gao, D., Wang, K., Insua, T. L., Sypus, M., Riedel, M., & Sun, T. (2018). Defining megathrust tsunami source scenarios for northernmost Cascadia. Natural Hazards, 94, 445–469.

    Article  Google Scholar 

  • Goda, K., Mai, P. M., Yasuda, T., & Mori, N. (2014). Sensitivity of tsunami wave profiles and inundation simulations to earthquake slip and fault geometry for the 2011 Tohoku earthquake. Earth, Planets and Space, 66, 105.

    Article  Google Scholar 

  • Goda, K., Yasuda, T., Mori, N., & Maruyama, T. (2016). New scaling relationships of earth-quake source parameters for stochastic tsunami simulation. Coastal Engineering Journal, 58, 1650010.

    Article  Google Scholar 

  • Goldfinger, C., Nelson, C.H., Morey, A.E., Johnson, J.E., Patton, J., Karabanov, E., Gutierrez-Pastor, J., Eriksson, A.T., Gracia, E., Dunhill, G., Enkin, R.J., Dallimore, A., & Vallier, T. (2012). Turbidite event history—Methods and implications for Holocene paleoseismicity of the Cascadia subduction zone. United States Geological Survey Professional Paper 1661–F, 170 p.

  • Goto, C., Ogawa Y., Shuto, N., & Imamura, F. (1997). Numerical method of tsunami simulation with the leap-frog scheme. IOC Manuals and Guides, 35. UNESCO, Paris, France

  • Griffin, J. D., Pranantyo, I. R., Kongko, W., Haunan, A., Robiana, R., Miller, V., Davies, G., Horspool, N., Maemunah, I., Widjaja, W. B., Natawidjaja, D. H., & Latief, H. (2017). Assessing tsunami hazard using heterogeneous slip models in the Mentawai islands, Indonesia. Geological Society, London, Special Publications, 441, 47–70.

    Article  Google Scholar 

  • Gusman, A. R., Sheehan, A. F., Satake, K., Heidarzadeh, M., Mulia, I. E., & Maeda, T. (2016). Tsunami data assimilation of Cascadia seafloor pressure gauge records from the 2012haida Gwaii earthquake: Dense array for tsunami warning. Geophysical Research Letters, 43, 4189–4196.

    Article  Google Scholar 

  • Haeussler, P. J., Witter, R. C., & Wang, K. (2015). Intertidal biological indicators of coseismic subsidence during the Mw 7.8 Haida Gwaii, Canada, earthquake. Bulletin of the Seismological Society of America, 105, 1265–1279.

    Article  Google Scholar 

  • Hayes, G. P. (2017). The finite, kinematic rupture properties of great-sized earthquakes since1990. Earth and Planetary Science Letters, 468, 94–100.

    Article  Google Scholar 

  • Hobbs, T. E., Cassidy, J. F., & Dosso, S. E. (2015). Rupture process of the 2012 Mw 7.8 Haida Gwaii earthquake from an empirical Green’s function method. Bulletin of the Seismological Society of America, 105, 1219–1230.

    Article  Google Scholar 

  • Hyndman, R. D. (2015). Tectonics and structure of the queen charlotte fault zone, Haida Gwaii, and large thrust earthquakes. Bulletin of the Seismological Society of America, 105, 1058–1075.

    Article  Google Scholar 

  • Hyndman, R. D., & Rogers, G. C. (2010). Great earthquakes on Canada’s west coast: A review. Canadian Journal of Earth Sciences, 47, 801–820.

    Article  Google Scholar 

  • James, T., Rogers, G. C., Cassidy, J. F., Dragert, H., Hyndman, R. D., Leonard, L., Nykolaishen, L., Riedel, M., Schmidt, M., & Wang, K. (2013). Field studies target 2012 Haida Gwaii earthquake. Eos, 94, 197–198.

    Article  Google Scholar 

  • Ji, C., Wald, D., & Helmberger, D. (2002). Source description of the 1999 hector mine, California, earthquake, part i: Wavelet domain inversion theory and resolution analysis. Bulletin of the Seismological Society of America, 92, 1192–1207.

    Article  Google Scholar 

  • Kao, H., Shan, S. J., & Farahbod, A. M. (2015). Source characteristics of the 2012 Haida Gwaii earthquake sequence. Bulletin of the Seismological Society of America, 105, 1206–1218.

    Article  Google Scholar 

  • Lay, T., Ye, L., Kanamori, H., Yamazaki, Y., Cheung, K. F., Kwong, K., & Koper, K. D. (2013). The October 28, 2012 Mw 7.8 Haida Gwaii under thrusting earthquake and tsunami: Slip partitioning along the queen charlotte fault transgressional plate boundary. Earth and Planetary Science Letters, 375, 57–70.

    Article  Google Scholar 

  • Leonard, L. J., & Bednarski, J. (2014). Field survey following the 28 October 2012 Haida Gwaii tsunami. Pure and Applied Geophysics, 171, 3467–3482.

    Article  Google Scholar 

  • Leonard, L. J., Rogers, G. C., & Mazzotti, S. (2014). Tsunami hazard assessment of Canada. Natural Hazards, 70, 237–274.

    Article  Google Scholar 

  • Løvholt, F., Pedersen, G., Bazin, S., Kühn, D., Bredesen, R. E., & Harbitz, C. (2012). Stochastic analysis of tsunami runup due to heterogeneous coseismic slip and dispersion. Journal of Geophysical Research: Oceans. https://doi.org/10.1029/2011JC007616

    Article  Google Scholar 

  • Løvholt, F., Glimsdal, S., Harbitz, C. B., Horspool, N., Smebye, H., De Bono, A., & Nadim, F. (2014). Global tsunami hazard and exposure due to large co-seismic slip. International Journal of Disaster Risk Reduction, 10, 406–418.

    Article  Google Scholar 

  • Mai, P. M., & Beroza, G. C. (2002). A spatial random field model to characterize complexity in earthquake slip. Journal of Geophysical Research Solid Earth. https://doi.org/10.1029/2001JB000588

    Article  Google Scholar 

  • Mai, P. M., & Thingbaijam, K. (2014). SRCMOD: An online database of finite-fault rupture models. Seismological Research Letters, 85, 1348–1357.

    Article  Google Scholar 

  • Mueller, C., Power, W., Fraser, S., & Wang, X. (2015). Effects of rupture complexity on local tsunami inundation: Implications for probabilistic tsunami hazard assessment by example. Journal of Geophysical Research: Solid Earth, 120, 488–502.

    Article  Google Scholar 

  • Nykolaishen, L., Dragert, H., Wang, K., James, T. S., & Schmidt, M. (2015). GPS observations of crustal deformation associated with the 2012 Mw 7.8 Haida Gwaii earthquake. Bulletin of the Seismological Society of America, 105, 1241–1252.

    Article  Google Scholar 

  • Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75, 1135–1154.

    Article  Google Scholar 

  • Rabinovich, A. B., Thomson, R. E., Titov, V. V., Stepheson, F. E., & Rogers, G. C. (2008). Locally generated tsunamis recorded on the coast of British Columbia. Atmosphere-Ocean, 46, 343–360.

    Article  Google Scholar 

  • Riedel, M., Yelisetti, S., Papenberg, C., Rohr, K. M. M., Côté, M. M., Spence, G. D., Hyndman, R. D., & James, T. (2021). Seismic velocity structure of the Queen Charlotte terrace off western Canada in the region of the 2012 Haida Gwaii Mw 7.8 thrust earthquake. Geosphere, 17, 23–38.

    Article  Google Scholar 

  • Satake, K., Fujii, Y., Harada, T., & Namegaya, Y. (2013). Time and space distribution of coseismic slip of the 2011 Tohoku earthquake as inferred from tsunami waveform data time and space distribution of coseismic slip of the 2011 Tohoku earthquake. Bulletin of the Seismological Society of America, 103, 1473–1492.

    Article  Google Scholar 

  • Sepúlveda, I., Liu, P. L., & Grigoriu, M. (2019). Probabilistic tsunami hazard assessment in South China Sea with consideration of uncertain earthquake characteristics. Journal of Geophysical Research: Solid Earth, 124, 658–688.

    Article  Google Scholar 

  • Shao, G., & Ji, C. (2012). Preliminary result of the oct 28, 2012 Mw 7.72 Canada. http://www.geol.ucsb.edu/faculty/ji/big earthquakes/2012/10/canada.html (Accessed: 20.05.2021)

  • Suppasri, A., Imamura, F., & Koshimura, S. (2010). Effects of the rupture velocity of fault motion, ocean current and initial sea level on the transoceanic propagation of tsunami. Coastal Engineering Journal, 52, 107–132.

    Article  Google Scholar 

  • Tanioka, Y., & Satake, K. (1996). Tsunami generation by horizontal displacement of ocean bottom. Geophysical Research Letters, 23, 861–864.

    Article  Google Scholar 

  • Walton, M., Staisch, L., Dura, T., Pearl, J., Sherrod, B., Gomberg, J., Engelhart, S., Tréhu, A., Watt, J., Perkins, J., Witter, R., Bartlow, N., Goldfinger, C., Kelsey, H., Morey, A., Sahakian, V., Tobin, H., Wang, K., Wells, R., & Wirth, E. (2021). Toward an integrative geological and geophysical view of Cascadia Subduction zone earthquakes. Annul Review of Earth and Planetary Sciences, 49, 367–398.

    Article  Google Scholar 

  • Wang, K., He, J., Schulzeck, F., Hyndman, R., & Riedel, M. (2015). Thermal condition of the 27 October 2012 Mw 7.8 Haida Gwaii subduction earthquake at the obliquely convergent queen charlotte margin. Bulletin of the Seismological Society of America, 105, 1290–1300.

    Article  Google Scholar 

  • Wei, S. (2012). Oct./28/2012 (Mw 7.8), Masset, Canada. source models of large earthquakes. http://www.tectonics.caltech.edu/sliphistory/2012Masset/index.html (Accessed: 20.05.2021)

Download references

Funding

The work is funded by the Canada Research Chair program (950-232015) and the NSERC Discovery Grant (RGPIN-2019-05898). The authors are grateful to two anonymous reviewers who provided detailed comments and suggestions to improve the original version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katsuichiro Goda.

Ethics declarations

Conflict of interest

There is no competing interest related to this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goda, K., Martínez Alcala, K. Stochastic Source Modelling and Tsunami Hazard Analysis of the 2012 Mw7.8 Haida Gwaii Earthquake. Pure Appl. Geophys. 180, 1599–1621 (2023). https://doi.org/10.1007/s00024-022-03061-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-03061-5

Keywords

Navigation