Skip to main content
Log in

Tsunami hazard assessment of Canada

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

We present a preliminary probabilistic tsunami hazard assessment of Canadian coastlines from local and far-field, earthquake, and large submarine landslide sources. Analyses involve published historical, palaeotsunami and palaeoseismic data, modelling, and empirical relations between fault area, earthquake magnitude, and tsunami run-up. The cumulative estimated tsunami hazard for potentially damaging run-up (≥1.5 m) of the outer Pacific coastline is ~40–80 % in 50 years, respectively one and two orders of magnitude greater than the outer Atlantic (~1–15 %) and the Arctic (<1 %). For larger run-up with significant damage potential (≥3 m), Pacific hazard is ~10–30 % in 50 years, again much larger than both the Atlantic (~1–5 %) and Arctic (<1 %). For outer Pacific coastlines, the ≥1.5 m run-up hazard is dominated by far-field subduction zones, but the probability of run-up ≥3 m is highest for local megathrust sources, particularly the Cascadia subduction zone; thrust sources further north are also significant, as illustrated by the 2012 Haida Gwaii event. For Juan de Fuca and Georgia Straits, the Cascadia megathrust dominates the hazard at both levels. Tsunami hazard on the Atlantic coastline is dominated by poorly constrained far-field subduction sources; a lesser hazard is posed by near-field continental slope failures similar to the 1929 Grand Banks event. Tsunami hazard on the Arctic coastline is poorly constrained, but is likely dominated by continental slope failures; a hypothetical earthquake source beneath the Mackenzie delta requires further study. We highlight areas susceptible to locally damaging landslide-generated tsunamis, but do not quantify the hazard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Abe K (1995) Estimate of tsunami run-up heights from earthquake magnitudes. In: Tsuchiya Y, Shuto N (eds) Tsunami: progress in prediction, disaster prevention and warning. Advances in technological hazards research, vol 4. Kluwer, The Netherlands, pp 21–35

    Google Scholar 

  • Aksu AE, Piper DJW (1987) Late Quaternary sedimentation in Baffin Bay. Can J Earth Sci 24(9):1833–1846

    Google Scholar 

  • Amundson JM, Truffer M, Lüthi MP, Fahnestock M, West M, Motyka RJ (2008) Glacier, fjord, and seismic response to recent large calving events, Jakobshavn Isbræ, Greenland. Geophys Res Lett 35(22):L22501. doi:10.1029/2008GL035281

    Google Scholar 

  • Atlantic and Gulf of Mexico Tsunami Hazard Assessment Group (AGMTHAG) (2008) Evaluation of tsunami sources with the potential to impact the US Atlantic and Gulf coasts—a report to the Nuclear Regulatory Commission. US Geological Survey Administrative Report, 300 pp

  • Atwater BF, Griggs GB (2012) Deep-sea turbidites as guides to Holocene earthquake history at the Cascadia subduction zone—alternative views for a seismic-hazard workshop. US Geological Survey Open-File Report 2012-1043, 58 pp

  • Atwater BF, Tuttle MP, Schweig ES, Rubin CM, Yamaguchi DK, Hemphill-Haley E (2004) Earthquake recurrence inferred from paleoseismology. In: Gillespie AR, Porter SC, Atwater BF (eds) The quaternary period in the United States. Elsevier Science, New York, pp 331–350

    Google Scholar 

  • Atwater BF, Musumi-Rokkaku S, Satake K, Tsuji Y, Ueda K, Yamaguchi DK (2005) The orphan tsunami of 1700—Japanese clues to a parent earthquake in North America. US Geological Survey Professional Paper 1707, 144 pp

  • Atwater BF, ten Brink US, Buckley M, Halley RS, Jaffe BE, López-Venegas AM, Reinhardt EG, Tuttle MP, Watt W, Wei Y (2010) Geomorphic and stratigraphic evidence for an unusual tsunami or storm a few centuries ago at Anegada, British Virgin Islands. Nat Hazards. doi:10.1007/s11069-010-9622-6

    Google Scholar 

  • Baptista MA, Miranda JM (2009) Revision of the Portuguese catalog of tsunamis. Nat Hazards Earth Syst Sci 9(1):25–42

    Google Scholar 

  • Baptista MA, Miranda JM, Chierici F, Zitellini N (2003) New study of the 1755 earthquake source based on multi-channel seismic survey data and tsunami modeling. Nat Hazards Earth Syst Sci 3(5):333–340

    Google Scholar 

  • Barkan R, ten Brink U, Lin J (2009) Far field tsunami simulations of the 1755 Lisbon earthquake: implications for tsunami hazard to the US east coast and the Caribbean. Mar Geol 264(1–2):109–122

    Google Scholar 

  • Benetti S (2006) Late Quaternary sedimentary processes along the western North Atlantic margin. Ph.D. thesis, University of Southampton, U.K. 188 p

  • Bent AL (2002) The 1933 Ms = 7.3 Baffin Bay earthquake: strike-slip faulting along the northeastern Canadian passive margin. Geophys J Int 150:724–736

    Google Scholar 

  • Bobrowsky PT, Dominguez MJ (2012) Landslide susceptibility map of Canada. Geological Survey of Canada, Open File 7228, scale 1:6 million. doi:10.4095/291902

  • Bondevik S, Løvholt F, Harbitz C, Mangerud J, Dawson A, Svendsen JI (2005) The Storegga Slide tsunami—comparing field observations with numerical simulations. Mar Pet Geol 22(1–2):195–208

    Google Scholar 

  • Bornhold BD, Harper JR, McLaren D, Thomson RE (2007) Destruction of the First Nations village of Kwalate by a rock avalanche-generated tsunami. Atmos Ocean 45(2):123–128

    Google Scholar 

  • Braunmiller J, Nábĕlek J (2002) Seismotectonics of the explorer region. J Geophys Res 107(B10):2208. doi:10.1029/2001JB000220

    Google Scholar 

  • Bryn P, Berg K, Forsberg CF, Solheim A, Kvalstad TJ (2005) Explaining the storegga slide. Mar Pet Geol 22:11–19

    Google Scholar 

  • Buckley ML, Wei Y, Jaffe BE, Watt SG (2011) Inverse modeling of velocities and inferred cause of overwash that emplaced inland fields of boulders at Anegada, British Virgin Islands. Nat Hazards. doi:10.1007/s11069-011-9725-8

    Google Scholar 

  • Bustin AMM (2006) The crustal structure, deformation from GPS, and seismicity related to oblique convergence along the Queen Charlotte margin, British Columbia. Ph.D. thesis, University of Victoria, Canada. 226 pp

  • Bustin AMM, Hyndman RD, Kao H, Cassidy JF (2007) Evidence for underthrusting beneath the Queen Charlotte margin, from teleseismic receiver function analysis. Geophys J Int 171:1198–1211

    Google Scholar 

  • Calais E, Mazabraud Y, Mercier de Lepinay B, Mann P, Mattioli G, Jansma P (2002) Strain partitioning and fault slip rates in the northeastern Caribbean from GPS measurements. Geophys Res Lett 106:1–9

    Google Scholar 

  • Cassidy JF, Ellis RM, Karavas C, Rogers GC (1998) The northern limit of the subducted Juan de Fuca plate system. J Geophys Res 103(B11):26949–26961

    Google Scholar 

  • Cauchon-Voyer G, Locat J, Leroueil S, St-Onge G, Demers D (2011) Large-scale subaerial and submarine Holocene and recent mass movements in the Betsiamites area, Quebec, Canada. Eng Geol 121:28–45

    Google Scholar 

  • Chaytor JD, ten Brink US, Solow AR, Andrews BD (2009) Size distribution of submarine landslides along the US Atlantic margin. Mar Geol 264(1–2):16–27

    Google Scholar 

  • Cherniawsky JY, Titov VV, Wang K, Li J-Y (2007) Numerical simulations of tsunami waves and currents for southern Vancouver Island from a Cascadia megathrust earthquake. Pure Appl Geophys 164(2–3):465–492

    Google Scholar 

  • Clague JJ, Bobrowsky PT, Hutchinson I (2000) A review of geological records of large tsunamis at Vancouver Island, British Columbia, and implications for hazard. Quat Sci Rev 19(9):849–863

    Google Scholar 

  • Davis EE, Hyndman RD (1989) Accretion and recent deformation of sediments along the northern Cascadia subduction zone. Geol Soc Am Bull 101(11):1465–1480

    Google Scholar 

  • Day S, Kilburn C, McGuire B (2008) Tectonic threats in the Caribbean. Issues in Risk Science 8, Benfield UCL Hazard Research Centre, London, 32 p

  • DeDontney N, Rice JR (2011) Tsunami wave analysis and possibility of splay fault rupture during the 2004 Indian Ocean earthquake. Pure Appl Geophys. doi:10.1007/s00024-011-0438-4

    Google Scholar 

  • DeMets C, Gordon RG, Argus DF (2010) Geologically current plate motions. Geophys J Int 181:1–80

    Google Scholar 

  • Dengler LA, Magoon OT (2006) Reassessing Crescent City, California’s tsunami risk. Proceedings of the 8th US national conference on earthquake engineering, San Francisco, California, Paper 1451, 10 pp

  • Dineva S, Eaton D, Mereu R (2004) Seismicity of the southern Great Lakes: revised earthquake hypocenters and possible tectonic controls. Bull Seismol Soc Am 94(5):1902–1918

    Google Scholar 

  • Doser DI, Rodriguez CM, Flores C (2005) Historical earthquakes of the Puerto Rico-Virgin Islands region (1915–1963). In: Mann P (ed), Active tectonics and seismic hazards of Puerto Rico, the Virgin Islands, and offshore areas. Geol Soc Am Spec Pap 385:103–114

  • Ebel JE (2011) A new analysis of the magnitude of the February 1663 earthquake at Charlevoix, Quebec. Bull Seismol Soc Am 101(3):1024–1038

    Google Scholar 

  • El-Sabh MI, Murty TS, Dumais J-F (1988) Tsunami hazards in the St. Lawrence Estuary, Canada. In: El-Sabh MI, Murty TS (eds) Natural and man-made hazards. D Reidel Publishing, The Netherlands, pp 201–213

    Google Scholar 

  • Evans SG (2001) Landslides. In: Brooks GR (ed) A synthesis of geological hazards in Canada. Geol Surv Can Bulletin 548, pp 43–79

  • Fernandes RMS, Ambrosius BAC, Noomen R, Bastos L, Wortel MJR, Spakman W, Govers R (2003) The relative motion between Africa and Eurasia as derived from ITRF2000 and GPS data. Geophys Res Lett 30(16):1828. doi:10.1029/2003GL017089

    Google Scholar 

  • Fernandes RMS, Miranda JM, Meijninger BML, Bos MS, Noomen R, Bastos L, Ambrosius BAC, Riva REM (2007) Surface velocity field of the Ibero-Maghrebian segment of the Eurasia-Nubia plate boundary. Geophys J Int 169:315–324

    Google Scholar 

  • Fine IV, Rabinovich AB, Bornhold BD, Thomson RE, Kulikov EA (2005) The Grand Banks landslide-generated tsunami of November 18, 1929: preliminary analysis and numerical modeling. Mar Geol 215(1–2):45–57

    Google Scholar 

  • Fine IV, Cherniawsky JY, Rabinovich AB, Stephenson F (2009) Numerical modeling and observations of tsunami waves in Alberni Inlet and Barkley Sound, British Columbia. Pure Appl Geophys 165:2019–2044

    Google Scholar 

  • Frankel AD (2011) Summary of November 2010 meeting to evaluate turbidite data for constraining the recurrence parameters of great Cascadia earthquakes for the update of the national seismic hazard maps. US Geological Survey Open-File Report 2011–1310. 13 pp

  • Geist EL (2005) Local tsunami hazards in the Pacific Northwest from Cascadia subduction zone earthquakes. US Geological Survey Professional Paper 1661-B, 17 pp

  • Geist EL, Parsons T (2006) Probabilistic analysis of tsunami hazards. Nat Hazards 37:277–314

    Google Scholar 

  • Geist EL, Parsons T (2009) Assessment of source probabilities for potential tsunamis affecting the US Atlantic coast. Mar Geol 264(1–2):98–108

    Google Scholar 

  • Geist EL, Parsons T, ten Brink US, Lee HJ (2009) Chapter 4: Tsunami probability. In: Bernard EN, Robinson AR (eds) The sea, vol 15: tsunamis. Harvard University Press, Cambridge, pp 93–136

    Google Scholar 

  • Gisler G, Weaver R, Gittings ML (2006) SAGE calculations of the tsunami threat from La Palma. Sci Tsunami Hazards 24(4):288–301

    Google Scholar 

  • Gisler G, Weaver R, Gittings M (2011) Calculations of asteroid impacts into deep and shallow water. Pure Appl Geophys 168:1187–1198

    Google Scholar 

  • Goldfinger C, Kulm LD, McNeill LC, Watts P (2000) Super-scale failure of the southern Oregon Cascadia margin. Pure Appl Geophys 157(6–8):1189–1226

    Google Scholar 

  • Goldfinger C, Nelson CH, Johnson JE, the Shipboard Scientific Party (2003) Holocene earthquake records from the Cascadia subduction zone and northern San Andreas Fault based on precise dating of offshore turbidites. Annu Rev Earth Planet Sci 31:555–577

    Google Scholar 

  • Goldfinger C, Nelson CH, Morey AE et al (2012) Turbidite event history: methods and implications for Holocene paleoseismicity of the Cascadia subduction zone. US Geological Survey Professional Paper 1661-F, 170 pp

  • Gràcia E, Vizcaino A, Escutia C, Asioli A, Rodés A, Garcia-Orellano J, Lebreiro S, Goldfinger C (2010) Holocene earthquake record offshore Portugal (SW Iberia): testing turbidite paleoseismology in a slow-convergence margin. Quat Sci Rev 29:1156–1172

    Google Scholar 

  • Grantz A, Phillips RL, Mullen MW, Starratt SW, Jones GA, Sathy Naidu A, Finney BP (1996) Character, paleoenvironment, rate of accumulation, and evidence for seismic triggering of Holocene turbidites, Canada Abyssal Plain, Arctic Ocean. Mar Geol 133:51–73

    Google Scholar 

  • Gutscher M-A, Westbrook GK (2009) Great earthquakes in slow-subduction, low-taper margins. In: Lallemand S, Funicello F (eds) Subduction zone geodynamics. Springer, Berlin, pp 119–133

    Google Scholar 

  • Gutscher M, Dominguez S, Westbrook GK, Leroy P (2009) Deep structure, recent deformation and analog modeling of the Gulf of Cadiz accretionary wedge: implications for the 1755 Lisbon earthquake. Tectonophysics 475:85–97

    Google Scholar 

  • Gutscher M-A, Westbrook GK, Marcaillou B, Graindorge D, Gailler A, Pichot T, Maury RC (2010) Along strike variations in the width of the seismogenic zone of the Lesser Antilles subduction predicted by thermal modeling. Geophys Res Abstr 12(EGU2010):10600

    Google Scholar 

  • Halchuk S, Adams J (2008) Fourth generation seismic hazard maps of Canada: maps and grid values to be used with the 2005 National Building Code of Canada. 1 CD-ROM

  • Hasegawa HS, Chou CW, Basham PW (1979) Seismotectonics of the Beaufort Sea. Can J Earth Sci 16(4):816–830

    Google Scholar 

  • Hayward N, Nedimović ClearyM, Calvert AJ (2006) Structural variation along the Devil’s Mountain fault zone, northwestern Washington. Can J Earth Sci 43:433–446

    Google Scholar 

  • Heezen BC, Ewing M (1952) Turbidity currents and submarine slumps, and the 1929 Grand Banks earthquake. Am J Sci 250(12):849–873

    Google Scholar 

  • Heuret A, Lallemand S, Funiciello F, Piromallo C, Faccenna C (2011) Physical characteristics of subduction interface type seismogenic zones revisited. Geochem Geophys Geosyst 12(1). doi:10.1029/2010GC003230

  • Hill PR, Moran KM, Blasco SM (1982) Creep deformation of slope sediments in the Canadian Beaufort Sea. Geo-Mar Lett 2(3–4):163–170

    Google Scholar 

  • Huppertz TJ, Piper DJW (2009) The influence of shelf-crossing glaciation on continental slope sedimentation, Flemish Pass, eastern Canadian continental margin. Mar Geol 265:67–85

    Google Scholar 

  • Hyndman RD, Ellis RM (1981) Queen Charlotte fault zone: microearthquakes from a temporary array of land stations and ocean bottom seismographs. Can J Earth Sci 18(4):776–788

    Google Scholar 

  • Hyndman RD, Mazzotti S, Weichert D, Rogers GC (2003) Frequency of large crustal earthquakes in Puget Sound—southern Georgia Strait predicted from geodetic and geological deformation rates. J Geophys Res 108(B1):2033. doi:10.1029/2001JB001710

    Google Scholar 

  • Hyndman RD, Cassidy JF, Adams J, Rogers GC, Mazzotti S (2005) Earthquakes and seismic hazard in the Yukon-Beaufort-Mackenzie. Can Soc Explor Geophys Rec, pp 32–66

  • James T, Rogers G, Cassidy J, Dragert H, Hyndman R, Leonard L, Nykolaishen L, Riedel M, Schmidt M, Wang K (2013) Field studies target 2012 Haida Gwaii earthquake. Eos Trans AGU 94(22):197–198

    Google Scholar 

  • Jansma PE, Mattioli GS, Lopez A, DeMets C, Dixon TH, Mann P, Calais E (2000) Neotectonics of Puerto Rico and the Virgin Islands, northeastern Caribbean, from GPS geodesy. Tectonics 19(6):1021–1037

    Google Scholar 

  • Johnson SY, Dadisman SV, Mosher DC, Blakely RJ, Childs JR (2001) Active tectonics of the Devils Mountain fault and related structures, northern Puget Lowland and eastern Strait of Juan de Fuca region, Pacific Northwest. US Geological Survey Professional Paper 1643, 65 pp

  • Kao H, Shan S-J, Dragert H, Rogers G (2009) Northern Cascadia episodic tremor and slip: a decade of tremor observations from 1997 to 2007. J Geophys Res 114:B00A12. doi:10.1029/2008JB006046

    Google Scholar 

  • Kayen RE, Lee HJ (1991) Pleistocene slope instability of gas hydrate-laden sediment on the Beaufort sea margin. Mar Georesour Geotechnol 10(1–2):125–141

    Google Scholar 

  • Knight B (2006) Model prediction of Gulf and southern Atlantic coast tsunami impacts from a distribution of sources. Sci Tsunami Hazards 24(5):304–312

    Google Scholar 

  • Korup O, Clague JJ (2009) Natural hazards, extreme events, and mountain topography. Quat Sci Rev 28(11–12):977–990

    Google Scholar 

  • Koshimura S, Mofjeld HO, González FI, Moore AL (2002) Modeling the 1100 bp paleotsunami in Puget Sound, Washington. Geophys Res Lett 29(20):1948. doi:10.1029/2002GL015170

    Google Scholar 

  • Kulikov EA, Rabinovich AB, Thomson RE, Bornhold BD (1996) The landslide tsunami of November 3, 1994, Skagway Harbor, Alaska. J Geophys Res 101(C3):6609–6615

    Google Scholar 

  • LaForge RC, McCann WR (2005) A seismic source model for Puerto Rico, for use in probabilistic ground motion hazard analyses. In: Mann P (ed) Active tectonics and seismic hazards of Puerto Rico, the Virgin Islands, and offshore areas. Geol Soc Am Spec Pap 385:223–248

  • Lander JF, Whiteside LS, Lockridge PA (2002) A brief history of tsunamis in the Caribbean Sea. Sci Tsunami Hazards 20(2):57–94

    Google Scholar 

  • Lane L (2002) Tectonic evolution of the Canadian Beaufort Sea—Mackenzie Delta region” a brief review. Can Soc Explor Geophys Rec, pp 49–56

  • Lay T, Ye L, Kanamori H, Yamazaki Y, Cheung KF, Kwong K, Koper KD (2013) The October 28, 2012 Mw 7.8 Haida Gwaii underthrusting earthquake and tsunami: slip partitioning alonf the Queen Charlotte fault transpressional boundary. Earth Planet Sci Lett. doi:10.1016/j.epsl.2013.05.005

    Google Scholar 

  • Leonard LJ, Hyndman RD, Mazzotti S (2004) Coseismic subsidence in the 1700 great Cascadia earthquake: coastal estimates versus elastic dislocation models. Geol Soc Am Bull 116:655–670

    Google Scholar 

  • Leonard LJ, Hyndman RD, Mazzotti S, Nykolaishen L, Schmidt M, Hippchen S (2007) Current deformation in the northern Canadian Cordillera inferred from GPS measurements. J Geophys Res 112(B11401). doi:10.1029/2007JB005061

  • Leonard LJ, Rogers GC, Hyndman RD (2010) Annotated bibliography of references relevant to tsunami hazard in Canada. Geological Survey of Canada, Open File 6552, 269 pp

  • Leonard LJ, Rogers GC, Mazzotti S (2012a) A preliminary tsunami hazard assessment of the Canadian coastline. Geological Survey of Canada, Open File 7201, 126 pp. doi:10.4095/292067

  • Leonard LJ, Bednarski J, Fine I, Cherniawsky J, Wright C (2012b) The Haida Gwaii tsunami of October 27, 2012. Risky Ground: Centre for Natural Hazard Research newsletter, Simon Fraser Univ Winter edition: 10–11

  • Lewis T, Francus P, Bradley RS (2007) Limnology, sedimentology, and hydrology of a jökulhlaup into a meromictic High Arctic lake. Can J Earth Sci 44:791–806

    Google Scholar 

  • Li G, Piper DJW, Campbell DC (2010) The Quaternary Lancaster Sound trough-mouth fan, NW Baffin Bay. In: Atlantic Geoscience Society Abstracts, Atl Geol 46:59

  • Locat J, Martin F, Levesque C, Locat P, Leroueil S, Konrad JM, Urgeles R, Canals M, Duchesne MJ (2003) Submarine mass movements in the upper Saguenay Fjord, (Québec, Canada), triggered by the 1663 earthquake. In: Locat J, Mienert J (eds) Submarine mass movements and their consequences. Advances in Natural and Technological Hazards Research, vol 19. Kluwer, The Netherlands, pp 509–519

    Google Scholar 

  • López C, Spence G, Hyndman R, Kelley D (2010) Frontal ridge slope failure at the northern Cascadia margin: margin-normal fault and gas hydrate control. Geology 38(11):967–970

    Google Scholar 

  • Ludwin RS, Dennis R, Carver D, McMillan AD, Losey R, Clague J, Jonientz-Trisler C, Bowechop J, Wray J, James K (2005) Dating the 1700 Cascadia earthquake: great coastal earthquakes in Native stories. Seismol Res Lett 76(2):140–148

    Google Scholar 

  • Luque L, Lario J, Civis J, Silva PG, Zazo C, Goy JL, Dabrio CJ (2002) Sedimentary record of a tsunami during Roman times, Bay of Cadiz, Spain. J Quat Sci 17(5–6):623–631

    Google Scholar 

  • Macayeal DR, Abbot DS, Sergienko OV (2011) Iceberg-capsize tsunamigenesis. Ann Glaciol 52(58):51–56

    Google Scholar 

  • Mader C (2001) Modeling the La Palma landslide tsunami. Sci Tsunami Hazards 19(3):150–170

    Google Scholar 

  • Masson DG, Watts AB, Gee MJR, Urgeles R, Mitchell NC, Le Bas TP, Canals M (2002) Slope failures on the flanks of the western Canary Islands. Earth-Sci Rev 57(1–2):1–35

    Google Scholar 

  • Mazzotti S, Hyndman RD, Flück P, Smith AJ, Schmidt M (2003a) Distribution of the Pacific/North America motion in the Queen Charlotte Islands-S. Alaska plate boundary zone. Geophys Res Lett 30(14):1762. doi:10.1029/2003GL017586

    Google Scholar 

  • Mazzotti S, Dragert H, Henton J, Schmidt M, Hyndman R, James T, Lu Y, Craymer M (2003b) Current tectonics of northern Cascadia from a decade of GPS measurements. J Geophys Res 108(B12):2554. doi:10.1029/2003JB002653

    Google Scholar 

  • Mazzotti S, James TS, Henton J, Adams J (2005) GPS crustal strain, postglacial rebound, and seismic hazard in eastern North America: the Saint Lawrence valley example. J Geophys Res 110(B11301). doi:10.1029/2004JB003590

  • McCann WR (1985) On the earthquake hazards of Puerto Rico and the Virgin Islands. Bull Seismol Soc Am 75(1):251–262

    Google Scholar 

  • McMurtry GM, Watts P, Fryer GJ, Smith JR, Imamura F (2004) Giant landslides, mega-tsunamis, and paleo-sea level in the Hawaiian Islands. Mar Geol 203:219–233

    Google Scholar 

  • Miller DJ (1960) Giant waves in Lituya Bay, Alaska. US Geological Survey Professional Paper 354-C, pp 51–86

  • Moore JG, Bryan WB, Ludwig KR (1994) Chaotic deposition by a giant wave, Molokai, Hawaii. Geol Soc Am Bull 106(7):962–967

    Google Scholar 

  • Mosher DC (2009) Submarine landslides and consequent tsunamis in Canada. Geosci Can 36(4):179–190

    Google Scholar 

  • Mosher DC, Piper DJW (2007) Analysis of multibeam seafloor imagery of the Laurentian Fan and the 1929 Grand Banks landslide area. In: Lykousis V, Sakellariou D, Locat J (eds) Submarine mass movements and their consequences. Advances in Natural and Technological Hazards Research, vol 27. Springer, The Netherlands, pp 77–88

    Google Scholar 

  • Mosher DC, Moran KM, Hiscott RN (1994) Late Quaternary sediment, sediment mass flow processes and slope instability on the Scotian Slope. Sedimentology 41(5):1039–1061

    Google Scholar 

  • Mosher DC, Cassidy JF, Lowe C, Mi Y, Hyndman RD, Rogers GC, Fisher M (2000) Neotectonics in the Strait of Georgia: first tentative correlation of seismicity with shallow geological structure in southwestern British Columbia. In: Current Res, Geological Survey of Canada, paper 2000-A22, 9 pp

  • Mosher DC, Monahan PA, Barrie JV, Courtney RC (2004) Coastal submarine failures in the Strait of Georgia, British Columbia: landslides of the 1946 Vancouver Island earthquake. J Coast Res 20(1):277–291

    Google Scholar 

  • Mosher DC, Xu Z, Shimeld J (2010) The Pliocene Shelburne mass-movement and consequent tsunami, western Scotian Slope. In: Mosher DC, Shipp RC, Moscardelli L, Chaytor JD, Baxter CDP, Lee HJ, Urgeles R (eds) Submarine mass movements and their consequences. Advances in Natural and Technological Hazards Research, vol 28. Springer, The Netherlands, pp 765–775

    Google Scholar 

  • Mosher DC, Shimeld J, Hutchinson D, Lebedeva-Ivanova N, Chapman CB (2012) Submarine landslides in Arctic sedimentation: Canada Basin. In: Yamada Y, Kawamura K, Ikehara K, Ogawa Y, Urgeles R, Mosher D, Chaytor J, Strasser M (eds) Submarine mass movements and their consequences. Advances in Natural and Technological Hazards Research, vol 31. Springer, The Netherlands, pp 147–157

    Google Scholar 

  • Muir-Wood R, Mignan A (2009) A phenomenological reconstruction of the Mw 9 November 1st 1755 earthquake source. In: Mendes-Victor LA, Oliviera CS, Azebedo J, Ribeiro A (eds) The 1755 Lisbon earthquake: revisited. Geotechnical, geological, and earthquake engineering 7. Springer, Berlin, pp 121–146

    Google Scholar 

  • Pararas-Carayannis G (2002) Evaluation of the threat of mega tsunami generation from postulated massive slope failures of island stratovolcanoes on La Palma, Canary Islands, and on the island of Hawaii. Sci Tsunami Hazards 20(5):251–277

    Google Scholar 

  • Peterson CD, Cruikshank KM, Darienzo ME, Wessen GC, Butler VL, Sterling SL (2013a) Coseismic subsidence and paleotsunami run-up records from latest Holocene deposits in the Waatch Valley, Neah Bay, Northwest Washington, USA: links to great earthquakes in the northern Cascadia margin. J Coast Res 29(1):157–172

    Google Scholar 

  • Peterson CD, Clague JJ, Carver GA, Cruikshank KM (2013b) Recurrence intervals of major paleotsunamis as calibrated by historic tsunami deposits in three localities: port Alberni, Cannon Beach, and Crescent City, along the Cascadia margin, Canada and USA. Nat Hazards. doi:10.1007/s11069-013-062-1

    Google Scholar 

  • Pilkey OH (1988) Basin plains; giant sedimentation events. Geol Soc Am Spec Pap 229:93–99

    Google Scholar 

  • Piper DJW (2005) Late Cenozoic evolution of the continental margin of eastern Canada. Nor J Geol 85:305–318

    Google Scholar 

  • Piper DJW (2007) Labrador geological framework report to C-Core. unpublished report, 9 pp

  • Piper DJW, Campbell DC (2005) Quaternary geology of Flemish Pass and is application to geohazard evaluation for hydrocarbon development. Pet Resour Reserv Spec Pap 43:29–43

    Google Scholar 

  • Piper DJW, McCall C (2003) A synthesis of the distribution of submarine mass movements on the eastern Canadian margin. In: Locat J, Mienert J (eds) Submarine mass movements and their consequences. Advances in Natural and Technological Hazards Research, vol 19. Kluwer, The Netherlands, pp 291–298

    Google Scholar 

  • Piper DJW, Mosher DC, Gauley B-J, Jenner K, Campbell DC (2003) The chronology and recurrence of submarine mass movements on the continental slope off southeastern Canada. In: Locat J, Mienert J (eds) Submarine mass movements and their consequences. Advances in Natural and Technological Hazards Research, vol 19. Kluwer, The Netherlands, pp 299–306

    Google Scholar 

  • Piper DJW, Tripsanas E, Mosher DC, MacKillop K (2011) Paleoseismicity of the continental margin of eastern Canada: rare regional failures and associated turbidites in Orphan Basin. Unpublished manuscript, 38 pp

  • Poncet R, Campbell C, Dias F, Locat J, Mosher D (2010) A study of the tsunami effects of two landslides in the St. Lawrence estuary. In: Mosher DC, Shipp RC, Moscardelli L, Chaytor JD, Baxter CDP, Lee HJ, Urgeles R (eds) Submarine mass movements and their consequences. Advances in Natural and Technological Hazards Research, vol 28. Springer, The Netherlands, pp 755–764

    Google Scholar 

  • Priest GR, Goldfinger C, Wang K, Witter RC, Zhang Y, Baptista AM (2009) Confidence limits for tsunami-inundation limits in northern Oregon inferred from a 10,000-year history of great earthquakes at the Cascadia subduction zone. Nat Hazards. doi:10.1007/s11069-009-9453-5

    Google Scholar 

  • Rabinovich AB, Thomson RE, Bornhold BD, Fine IV, Kulikov EA (2003) Numerical modelling of tsunamis generated by hypothetical landslides in the Strait of Georgia, British Columbia. Pure Appl Geophys 160(7):1273–1313

    Google Scholar 

  • Rabinovich AB, Thomson RE, Titov VV, Stephenson FE, Rogers GC (2008) Locally generated tsunamis recorded on the coast of British Columbia. Atmos Ocean 46(3):343–360

    Google Scholar 

  • Reimnitz E, Maurer DK (1978) Storm surges in the Alaskan Beaufort Sea. US Geological Survey Open-File Report 78–593, 26 pp

  • Ristau J, Rogers GC, Cassidy JF (2007) Stress in western Canada from regional moment tensor analysis. Can J Earth Sci 44:127–148

    Google Scholar 

  • Roger J, Baptista MA, Mosher D, Hébert H, Sahal A (2010) Tsunami impact on Newfoundland, Canada, due to far-field generated tsunamis: implications on hazard assessment. In: Proceedings of the 9th US national and 10th Canadian conference on earthquake engineering. Toronto, July 25–29, Paper 1837, 6 pp

  • Roger J, Baptista MA, Sahal A, Accary F, Allgeyer S, Hébert H (2011) The transoceanic 1755 Lisbon tsunami in Martinique. Pure Appl Geophys 168(6–7):1015–1031

    Google Scholar 

  • Rohr KMM, Furlong KP (1995) Ephemeral plate tectonics at the Queen Charlotte triple junction. Geology 23(11):1035–1038

    Google Scholar 

  • Rohr KMM, Scheidhauer M, Trehu AM (2000) Transpression between two warm mafic plates: the Queen Charlotte fault revisited. J Geophys Res 105(B4):8147–8172

    Google Scholar 

  • Ruffman A (2006) Documentation of the farfield parameters of the November 1, 1755 “Lisbon” tsunami along the shores of the western Atlantic Ocean. In: Program and Abstracts, International Tsunami Society Third Tsunami Symposium. Honolulu, HI, May 23–25

  • Ruffman A, Murty T (2006) Tsunami hazards in the Arctic regions of North America, Greenland and the Norwegian Sea. In: Program and Abstracts, International Tsunami Society Third Tsunami Symposium. Honolulu, HI, May 23–25

  • Satake K, Wang K, Atwater BF (2003) Fault slip and seismic moment of the 1700 Cascadia earthquake inferred from Japanese tsunami descriptions. J Geophys Res 108(B11):2535. doi:10.1029/2003JB002521

    Google Scholar 

  • Scheffers A, Scheffers S, Kelletat D (2005) Paleo-tsunami relics on the southern and central Antillean Island arc. J Coast Res 21(2):263–273

    Google Scholar 

  • Shanmugam G (2011) Process-sedimentological challenges in distinguishing paleo-tsunami deposits. Nat Hazards. doi:10.1007/s11069-011-9766-z

    Google Scholar 

  • Shennan I, Bruhn R, Plafker G (2009) Multi-segment earthquakes and tsunami potential of the Aleutian megathrust. Quat Sci Rev 28(1–2):7–13

    Google Scholar 

  • Sherrod BL, Mazzotti S, Haugerud R (2008) Comparison of geodetic and paleoseismic rates of deformation in the Puget Sound-Georgia Basin, Pacific Northwest. Eos Trans Am Geophys Union 89(53):Abstract T21B-1953

  • Skvortsov A, Bornhold B (2007) Numerical simulation of the landslide-generated tsunami in Kitimat Arm, British Columbia, Canada, 27 April 1975. J Geophys Res 112(F02028). doi:10.1029/2006JF000499

  • Smith AJ, Hyndman RD, Cassidy JF, Wang K (2003) Structure, seismicity, and thermal regime of the Queen Charlotte transform margin. J Geophys Res 108(B11):2539. doi:10.1029/2002JB002247

    Google Scholar 

  • Solares JMM, Arroyo AL (2004) The great historical 1755 earthquake: effects and damage in Spain. J Seismol 8(2):275–294

    Google Scholar 

  • Solheim A, Berg K, Forsberg CF, Bryn P (2005) The Storegga Slide complex: repetitive large scale sliding with similar cause and development. Mar Pet Geol 22:97–107

    Google Scholar 

  • Spaeth MG, Berkman SC (1967) The tsunami of March 28, 1964, as recorded at tide stations. Coast and Geodetic Survey Technical Bulletin 33, US Department of Commerce, 86 pp

  • Stephenson FE, Rabinovich AB (2009) Tsunamis on the Pacific coast of Canada recorded in 1994–2007. Pure Appl Geophys 166(1–2):177–210

    Google Scholar 

  • Stephenson F, Rabinovich AB, Solovieva ON, Kulikov EA, Yakovenko OI (2007) Catalogue of tsunamis, British Columbia, Canada: 1700–2007. P.P. Shirshov Institute of Oceanology, Moscow

    Google Scholar 

  • Stich D, Mancilla F, Pondrelli S, Morales J (2007) Source analysis of the February 12th 2007, Mw 6.0 Horseshoe earthquake: implications for the 1755 Lisbon earthquake. Geophys Res Lett 34:L12308. doi:10.1029/2007GL030012

    Google Scholar 

  • Suleimani E, Nicolsky DJ, Haeussler PJ, Hansen R (2011) Combined effects of tectonic and landslide-generated tsunami runup at Seward, Alaska during the M w 9.2 1964 earthquake. Pure Appl Geophys 168:1053–1074

    Google Scholar 

  • Syvitski JPM, Burrell DC, Skei JM (1987) Chapter 5: Subaqueous slope failure. In: Fjords: processes and products. Springer, New York, pp 175–209

    Google Scholar 

  • Szczuciński W (2012) The post-depositional changes of the onshore 2004 tsunami deposits on the Andaman Sea coast of Thailand. Nat Hazards 60(1):115–133

    Google Scholar 

  • Taggart BE, Lundberg J, Carew JL, Mylroie JE (1993) Holocene reef-rock boulders on Isla de Mona, Puerto Rico transported by a hurricane or seismic sea wave. Geol Soc Am Abstr with Programs 25(6):A–A61

    Google Scholar 

  • Tappin DR, McNeil LC, Henstock T, Mosher D (2007) Mass wasting processes–offshore Sumatra. In: Lykousis V, Sakellariou D, Locat J (eds) Submarine mass movements and their consequences. Advances in Natural and Technological Hazards Research, vol 27. Springer, The Netherlands, pp 327–336

    Google Scholar 

  • ten Brink US, López-Venegas AM (2012) Plate interaction in the NE Caribbean subduction zone from continuous GPS observations. Geophys Res Lett 39:L10304. doi:10.1029/2012GL051485

    Google Scholar 

  • ten Brink US, Geist EL, Lynett P, Andrews, B (2006) Submarine slides north of Puerto Rick and their tsunami hazard. In: Mercado-Irizarry, A, Liu P (eds) Caribbean Tsunami Hazard, Proceedings of the NSF Caribbean tsunami workshop. World Scientific Publishing Co. Pte. Ltd., pp 67–90

  • ten Brink US, Lee HJ, Geist EL, Twichell D (2009) Assessment of tsunami hazard to the US east coast using relationships between submarine landslides and earthquakes. Mar Geol 264(1–2):65–73

    Google Scholar 

  • Thiebot E, Gutscher M-A (2006) The Gibraltar Arc seismogenic zone (part 1): constraints on a shallow east dipping fault plane source for the 1755 Lisbon earthquake provided by seismic data, gravity and thermal modeling. Tectonophysics 426:135–152

    Google Scholar 

  • Thomson RE, Rabinovich AB, Krassovski MV (2007) Double jeopardy: concurrent arrival of the 2004 Sumatra tsunami and storm-generated waves on the Atlantic coast of the United States and Canada. Geophys Res Lett 34:L15607. doi:10.1029/2007GL030685

    Google Scholar 

  • Tocque P (1846) Wandering thoughts, or solitary hours. Thomas Richardson and Son, London

    Google Scholar 

  • van Zeyl DP (2009) Evaluation of subaerial landslide hazards in Knight Inlet and Howe Sound, British Columbia. MSc. thesis, Simon Fraser University, Vancouver, Canada. 199 pp

  • Vernant P, Fadil A, Mourabit T, Ouazar D, Koulali A, Davila JM, Garate J, McClusky S, Reilinger R (2010) Geodetic constraints on active tectonics of the Western Mediterranean: implications for the kinematics and dynamics of the Nubia-Eurasia plate boundary zone. J Geodyn 49:123–129

    Google Scholar 

  • Ward SN (2001) Landslide tsunami. J Geophys Res 106(6):11201–11215

    Google Scholar 

  • Ward SN, Day S (2001) Cumbre Vieja Volcano—potential collapse and tsunami at La Palma,Canary Islands. Geophys Res Lett 28(17):3397–3400

    Google Scholar 

  • Ward SN, Day S (2005) Tsunami thoughts. CSEG Recorder, December 2005. pp 38–44

  • Watts P (2004) Probabilistic predictions of landslides tsunamis off southern California. Mar Geol 203(3–4):281–301

    Google Scholar 

  • Waythomas CF, Watts P, Shi F, Kirby JT (2009) Pacific Basin tsunami hazards associated with mass flows in the Aleutian arc of Alaska. Quat Sci Rev 28(11–12):1006–1019

    Google Scholar 

  • WCATWC (West Coast and Alaska Tsunami Warning Center) (2009a) Amplitudes for the September 29, 2009 Samoa tsunami. http://wcatwc.arh.noaa.gov/previous.events/09-29-09-Samoa/09-29-09.htm

  • WCATWC (West Coast and Alaska Tsunami Warning Center) (2009b) Amplitudes for the October 7, 2009 Torres Islands, Vanuatu tsunami. http://wcatwc.arh.noaa.gov/previous.events/10-07-09/10-07-09.htm

  • Wessel P, Smith WHF (1995) New version of the generic mapping tools released. EOS Trans Am Geophys Union 76(33):329. doi:10.1029/95EO00198

    Google Scholar 

  • Whitmore PM (1993) Expected tsunami amplitudes and currents along the North American coast for Cascadia subduction zone earthquakes. Nat Hazards 8:59–73

    Google Scholar 

  • Whitmore P, Benz H, Bolton M et al (2008) NOAA/West Coast and Alaska tsunami warning center Pacific Ocean response criteria. Sci Tsunami Hazards 27(1):1–21

    Google Scholar 

  • Wigen SO (1983) Historical study of tsunamis at Tofino, Canada. In: Iida K, Iwasaki T (eds) Tsunamis—their science and engineering. Terra Scientific Publishing, Tokyo, pp 105–119

    Google Scholar 

  • Willoughby EC, Hyndman RD (2005) Earthquake rate, slip rate, and the effective seismic thickness for oceanic transform faults of the Juan de Fuca plate system. Geophys J Int 160:855–868

    Google Scholar 

  • Witter RC, Zhang Y, Wang K, Priest GR, Goldfinger C, Stimely LL, English JT, Ferro PA (2011) Simulating tsunami inundation at Bandon, Coos County, Oregon, using hypothetical Cascadia and Alaska earthquake scenarios. Oregon Dept of Geology and Mineral Industries Special Paper 43, 57 pp

  • Wynn RB, Masson DG (2003) Canary Islands landslides and tsunami generation: can we use turbidite deposits to interpret landslide processes. In: Locat J, Mienert J (eds) Submarine mass movements and their consequences. Advances in Natural and Technological Hazards Research, vol 19. Kluwer, The Netherlands, pp 325–332

    Google Scholar 

  • Xu Z (2007) The all-source Green’s function and its application to tsunami problems. Sci Tsunami Hazards 26(1):59–69

    Google Scholar 

Download references

Acknowledgments

We acknowledge helpful discussions and input from John Adams, Jan Bednarski, Calvin Campbell, Josef Cherniawsky, Scott Dallimore, Isaac Fine, Phil Hill, Sabine Hippchen, Roy Hyndman, Carmel Lowe, Brian MacLean, David Mazzucchi, David Mosher, David Piper, Alexander Rabinovich, Alan Ruffman, Franck Saint-Ange, Fred Stephenson, and Kelin Wang. The manuscript was improved by useful comments from three anonymous reviewers. Several figures were prepared with the aid of GMT software (Wessel and Smith 1995). This is Earth Sciences Sector contribution 20130130.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucinda J. Leonard.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leonard, L.J., Rogers, G.C. & Mazzotti, S. Tsunami hazard assessment of Canada. Nat Hazards 70, 237–274 (2014). https://doi.org/10.1007/s11069-013-0809-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-013-0809-5

Keywords

Navigation