Skip to main content
Log in

Investigating the Contribution of Stress Drop to Ground-Motion Variability by Simulations Using the Stochastic Empirical Green’s Function Method

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The stress drop (Δσ) is a fundamental parameter used to quantify source physics, and its uncertainty is closely related to seismic hazard. To reveal the relationship between Δσ uncertainty and resultant ground-motion variability, ground motions produced by the 2013 Mw6.6 Lushan earthquake, characterized by various Δσ values, are simulated using the stochastic empirical Green’s function method. First, the variability in spectral amplitudes of simulated ground motions arising from the stochastic rupture process is investigated. Generally, it increases from ~ 0.05 to ~ 0.14 as the period increases up to 2.0 s, irrespective of the Δσ value used. The ground-motion variability due to Δσ uncertainty is then explored. The synthetic spectral amplitude is found to be linearly proportional to Δσb, thus the standard deviation of Δσ (log10 unit) is equal to the standard deviation of the spectral amplitude (log10 unit) multiplied by a factor b. The regressed b values are strongly dependent on the period and generally in the range of 0.7 to 0.6 up to the period of 2.0 s. These results explain how much of the ground-motion variability is caused purely by Δσ uncertainty. Moreover, the standard deviation of the spectral amplitudes is calculated directly from simulations based on random Δσ values following a lognormal distribution. The findings further verify the reliability of the relationship between Δσ uncertainty and ground-motion variability. Assuming that the interevent standard deviation in a ground-motion prediction model is dominated entirely by Δσ uncertainty and the stochastic rupture process, we estimate the standard deviation of log10Δσ (~ 0.2–0.3) for broad regions using various models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abercrombie, R. E. (2015). Investigating uncertainties in empirical Green’s function analysis of earthquake source parameters. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1002/2015JB011984.

    Article  Google Scholar 

  • Abrahamson, N. A., Silva, W. J., & Kamai, R. (2014). Summary of the ASK14 ground motion relation for active crustal regions. Earthquake Spectra, 30(3), 1025–1055. https://doi.org/10.1193/070913EQS198M.

    Article  Google Scholar 

  • Allmann, B. P., & Shearer, P. M. (2009). Global variations of stress drop for moderate to large earthquakes. Journal of Geophysical Research, 114, B01310. https://doi.org/10.1029/2008JB005821.

    Article  Google Scholar 

  • Baltay, A. S., & Hanks, T. C. (2014). Understanding the magnitude dependence of PGA and PGV in NGA-West2 data. Bulletin of the Seismological Society of America, 104(6), 2851–2865. https://doi.org/10.1785/0120130283.

    Article  Google Scholar 

  • Baltay, A. S., Hanks, T. C., & Beroza, G. C. (2013). Stable stress-drop measurements and their variability: implications for ground-motion prediction. Bulletin of the Seismological Society of America, 103(1), 211–222. https://doi.org/10.1785/0120120161.

    Article  Google Scholar 

  • Baltay, A., Ide, S., Prieto, G., & Beroza, G. (2011). Variability in earthquake stress drop and apparent stress. Geophysical Research Letters, 38, L06303. https://doi.org/10.1029/2011GL046698.

    Article  Google Scholar 

  • Beauval, C., Honoré, L., & Courboulex, F. (2009). Ground-motion variability and implementation of a probabilistic-deterministic hazard method. Bulletin of the Seismological Society of America, 99(5), 2992–3002. https://doi.org/10.1785/0120080183.

    Article  Google Scholar 

  • Bindi, D., Pacor, F., Luzi, L., Puglia, R., Massa, M., Ameri, G., et al. (2011). Ground motion prediction equations derived from the Italian strong motion database. Bulletin of Earthquake Engineering, 9, 1899–1920. https://doi.org/10.1007/s10518-011-9313-z.

    Article  Google Scholar 

  • Bindi, D., Spallarossa, D., Picozzi, M., Scafidi, D., & Cotto, F. (2018). Impact of magnitude selection on aleatory variability associated with ground-motion prediction equations: part I—local, energy, and moment magnitude calibration and stress-drop variability in central Italy. Bulletin of the Seismological Society of America, 108(3A), 1427–1442. https://doi.org/10.1785/0120170356.

    Article  Google Scholar 

  • Bjerrum, L. W., Sørensen, M. B., Ottemöller, L., & Atakan, K. (2013). Ground motion simulations for İzmir, Turkey: parameter uncertainty. Journal of Seismology, 17(4), 1223–1252. https://doi.org/10.1007/s10950-013-9389-9.

    Article  Google Scholar 

  • Boore, D. M. (2003). Simulation of ground motion using stochastic method. Pure and Applied Geophysics, 160, 635–676. https://doi.org/10.1007/PL00012553.

    Article  Google Scholar 

  • Boore, D. M., Stewart, J. P., Seyhan, E., & Atkinson, G. M. (2014). NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes. Earthquake Spectra, 30(3), 1057–1085. https://doi.org/10.1193/070113EQS184M.

    Article  Google Scholar 

  • Brune, J. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. Journal of Geophysical Research, 75, 4997–5009. https://doi.org/10.1029/JB075i026p04997.

    Article  Google Scholar 

  • Campbell, K. W., & Bozorgnia, Y. (2014). NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra. Earthquake Spectra, 30(3), 1087–1115. https://doi.org/10.1193/062913EQS175M.

    Article  Google Scholar 

  • Causse, M., Cotton, F., Cornou, C., & Bard, P.-Y. (2008). Calibrating median and uncertainty estimations for a practical use of empirical Green’s functions technique. Bulletin of the Seismological Society of America, 98(1), 344–353. https://doi.org/10.1785/0120070075.

    Article  Google Scholar 

  • Causse, M., Dalguer, L. A., & Mai, P. M. (2014). Variability of dynamic source parameters inferred from kinematic models of past earthquakes. Geophysical Journal International, 196, 1754–1769. https://doi.org/10.1093/gji/ggt478.

    Article  Google Scholar 

  • Causse, M., & Song, S. G. (2015). Are stress drop and rupture velocity of earthquakes independent? Insight from observed ground motion variability. Geophysical Research Letters. https://doi.org/10.1002/2015GL064793.

    Article  Google Scholar 

  • Chiou, B. S.-J., & Youngs, R. R. (2014). Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra, 30(3), 1117–1153. https://doi.org/10.1193/072813EQS219M.

    Article  Google Scholar 

  • Cocco, M., Tinti, E., & Cirella, A. (2016). On the scale dependence of earthquake stress drop. Journal of Seismology, 20, 1151–1170. https://doi.org/10.1007/s10950-016-9594-4.

    Article  Google Scholar 

  • Cotton, F., Archuleta, R., & Causse, M. (2013). What is sigma of the stress drop? Seismological Research Letters, 84(1), 42–48. https://doi.org/10.1785/0220120087.

    Article  Google Scholar 

  • Courboulex, F., Converset, J., Balestram, J., & Delouis, B. (2010). Ground-motion simulations of the 2004 M w 6.4 Les Saintes, Guadeloupe, earthquake using ten smaller events. Bulletin of the Seismological Society of America, 100(1), 116–130. https://doi.org/10.1785/0120080372.

    Article  Google Scholar 

  • Courboulex, F., Vallée, M., Causse, M., & Chounet, A. (2016). Stress-drop variability of shallow earthquakes extracted from a global database of source time functions. Seismological Research Letters, 87(4), 912–918. https://doi.org/10.1785/0220150283.

    Article  Google Scholar 

  • Dalguer, L. A., Miyake, H., Day, S. M., & Irikura, K. (2008). Surface rupturing and buried dynamic-rupture models calibrated with statistical observations of past earthquakes. Bulletin of the Seismological Society of America, 98(3), 1147–1161. https://doi.org/10.1785/0120070134.

    Article  Google Scholar 

  • Das, S., & Kostrov, B. V. (1986). Fracture of a single asperity on a finite fault: a model for weak earthquakes? Earthquake Source Mechanism (pp. 91–96). Washington: America Geophysical Union.

    Chapter  Google Scholar 

  • Eshelby, J. D. (1957). The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society, 241(1226), 376–396. https://doi.org/10.1098/rspa.1957.0133.

    Article  Google Scholar 

  • Hao, J., Ji, C., Wang, W., & Yao, Z. (2013). Rupture history of the 2013 M w6.6 Lushan earthquake constrained with local strong motion and teleseismic body and surface waves. Geophysical Research Letters, 40, 5371–5376. https://doi.org/10.1002/2013GL056876.

    Article  Google Scholar 

  • Hanks, T. C., & Kanamori, H. (1979). A moment magnitude scale. Journal of Geophysical Research, 84, 2348–2350.

    Article  Google Scholar 

  • Honoré, L., Courboulex, F., & Souriau, A. (2011). Ground motion simulations of a major historical earthquake (1660) in the French Pyrenees using recent moderate size earthquakes. Geophysical Journal International, 187, 1001–1018. https://doi.org/10.1111/j.1365-246X.2011.05319.x.

    Article  Google Scholar 

  • Idriss, I. M. (2014). An NGA-West3 empirical model for estimating the horizontal spectra values generated by shallow crustal earthquakes. Earthquake Spectra, 30(3), 1155–1177. https://doi.org/10.1193/070613EQS195M.

    Article  Google Scholar 

  • Irikura, K. (1983). Semi-empirical estimation of strong ground motions during large earthquake. Bulletin of the Disaster Prevention Research Institute, Kyoto University, 33(Part 2), 298.

    Google Scholar 

  • Kale, Ö., Akkar, S., Ansari, A., & Hamzehloo, H. (2015). A ground-motion predictive model for Iran and Turkey for horizontal PGA, PGV, and 5% damped response spectrum: investigation of possible regional effects. Bulletin of the Seismological Society of America, 105(2A), 963–980. https://doi.org/10.1785/0120140134.

    Article  Google Scholar 

  • Kanamori, H. (1994). Mechanics of earthquakes. Annual Review of Earth and Planetary Sciences, 22, 207–237.

    Article  Google Scholar 

  • Kanamori, H., & Anderson, D. L. (1975). Theoretical basis of some empirical relations in seismology. Bulletin of the Seismological Society of America, 65(5), 1073–1095.

    Google Scholar 

  • Kaneko, Y., & Shearer, P. M. (2014). Seismic source spectra and estimated stress drop derived from cohesive-zone models of circular subshear rupture. Geophysical Journal International, 197, 1002–1015. https://doi.org/10.1093/gji/ggu030.

    Article  Google Scholar 

  • Kaneko, Y., & Shearer, P. M. (2015). Variability of seismic source spectra, estimated stress drop, and radiated energy, derived from cohesive-zone models of symmetrical and asymmetrical circular and elliptical ruptures. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1002/2014JB011642.

    Article  Google Scholar 

  • Kohrs-Sansorny, C., Courboulex, F., Bour, M., & Anne, D. (2005). A two-stage method for ground-motion simulation using stochastic summation of small earthquakes. Bulletin of the Seismological Society of America, 95(4), 1387–1400. https://doi.org/10.1785/0120040211.

    Article  Google Scholar 

  • Lyu, J., Wang, X. S., Su, J. R., Pan, S. L., Li, Z., Yin, L. W., et al. (2013). Hypocenter location and source mechanism of the M s 7.0 Lushan earthquake sequence. Chinese Journal of Geophysics, 56(5), 1753–1763. https://doi.org/10.6038/cjg20130533. (in Chinese).

    Article  Google Scholar 

  • Madariaga, R. (1976). Dynamics of an expanding circular fault. Bulletin of the Seismological Society of America, 66(3), 639–666.

    Google Scholar 

  • McGuire, R. K., & Hanks, T. C. (1980). RMS accelerations and spectral amplitudes of strong motion during the San Fernando earthquake. Bulletin of the Seismological Society of America, 70(5), 1907–1920.

    Google Scholar 

  • Oth, A., Miyake, H., & Bindi, D. (2017). On the relation of earthquake stress drop and ground motion variability. Journal of Geophysical Research: Solid Earth, 122, 5474–5492. https://doi.org/10.1002/2017JB014026.

    Article  Google Scholar 

  • Pulido, N., Ojeda, A., Atakan, K., & Kubo, T. (2004). Strong ground motion estimation in the Sea of Marmara region (Turkey) based on a scenario earthquake. Tectonophysics, 391, 357–374. https://doi.org/10.1016/j.tecto.2004.07.023.

    Article  Google Scholar 

  • Salichon, J., Kohrs-Sansorny, C., Bertrand, E., & Courboulex, F. (2010). A M w6.3 earthquake scenario in the city of Nice (southeast France): ground motion simulations. Journal of Seismology, 14(3), 523–541. https://doi.org/10.1007/s10950-009-9180-0.

    Article  Google Scholar 

  • Sharma, B., Chopra, S., Sutar, A. K., & Bansal, B. K. (2013). Estimation of strong ground motion from a great earthquake M w 8.5 in central seismic gap region, Himalaya (India) using empirical Green’s function technique. Pure and Applied Geophysics, 170(12), 2127–2138. https://doi.org/10.1007/s00024-013-0647-0.

    Article  Google Scholar 

  • Somerville, P., Irikura, K., Graves, R., Sawada, S., Wald, D., Abrahamson, N., et al. (1999). Characterizing crustal earthquake slip models for the prediction of strong ground motion. Seismological Research Letters, 70(1), 59–70.

    Article  Google Scholar 

  • Sørensen, M. B., Pulidu, N., & Atakan, K. (2007). Sensitivity of ground-motion simulations to earthquake source parameters: a case study for Istanbul, Turkey. Bulletin of the Seismological Society of America, 97(3), 881–900. https://doi.org/10.1785/0120060044.

    Article  Google Scholar 

  • Wang, W. M., Hao, J. L., & Yao, Z. X. (2013a). Preliminary result for rupture process of Apr. 20, 2013, Lushan earthquake, Sichuan, China. Chinese Journal of Geophysics, 56(4), 1412–1417. https://doi.org/10.6038/cjg20130436. (in Chinese).

    Article  Google Scholar 

  • Wang, Y. S., Li, X. J., & Zhou, Z. H. (2013b). Research on attenuation relationships for horizontal strong ground motions in Sichuan-Yunnan region. Acta Seismologica Sinica, 35(2), 238–249. (in Chinese).

    Google Scholar 

  • Wang, H. W., Ren, Y. F., & Wen, R. Z. (2018). Source parameters, path attenuation and site effects from strong-motion recordings of the Wenchuan aftershocks (2008–2013) using a non-parametric generalized inversion technique. Geophysical Journal International, 212, 872–890. https://doi.org/10.1093/gji/ggx447.

    Article  Google Scholar 

  • Wang, H. W., Wen, R. Z., & Ren, Y. F. (2017). Simulating ground-motion directivity using stochastic empirical Green’s function method. Bulletin of the Seismological Society of America, 107(1), 359–371. https://doi.org/10.1785/0120160083.

    Article  Google Scholar 

  • Wells, D. L., & Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America, 84(4), 974–1002.

    Google Scholar 

  • Wen, R. Z., Wang, H. W., & Ren, Y. F. (2015). Estimation of source parameters and quality factor based on the generalized inversion method in Lushan earthquake. Journal of Harbin Institute of Technology, 47(4), 58–63. https://doi.org/10.11918/j.issn.0367-6234.2015.04.010. (in Chinese).

    Article  Google Scholar 

  • Wen, R. Z., Xu, P. B., Wang, H. W., & Ren, Y. F. (2018). Single-station standard deviation using strong-motion data from the Sichuan region, China. Bulletin of the Seismological Society of America, 108(4), 2237–2247. https://doi.org/10.1785/0120170276.

    Article  Google Scholar 

  • Zafarani, H., Vahidifard, H., & Ansari, A. (2012). Sensitivity of ground-motion scenarios to earthquake source parameters in the Tehran metropolitan area, Iran. Soil Dynamics and Earthquake Engineering, 43, 342–354. https://doi.org/10.1016/j.soildyn.2012.07.007.

    Article  Google Scholar 

  • Zhang, Y., Wang, R., Chen, Y. T., Xu, L., Du, F., Jin, M., et al. (2014). Kinematic rupture model and hypocenter relocation of the 2013 M w 6.6 Lushan earthquake constrained by strong-motion and teleseismic data. Seismological Research Letters, 85(1), 15–22. https://doi.org/10.1785/0220130126.

    Article  Google Scholar 

  • Zhao, J. X., Zhang, J., Asano, A., Ohno, Y., Oouchi, T., Takahashi, T., et al. (2006). Attenuation relations of strong ground motion in Japan using site classification based on predominant period. Bulletin of the Seismological Society of America, 96(3), 898–913. https://doi.org/10.1785/0120050122.

    Article  Google Scholar 

Download references

Acknowledgements

Strong-motion recordings used in this article were collected by the China Strong-Motion Network Center. Due to the current maintenance of its website (http://www.csmnc.net/) (official notice of Institute of Engineering Mechanics, CEA can be obtained at http://www.iem.ac.cn/detail.thml?id=1102), we contacted the email csmnc@iem.ac.cn for data application (last accessed June 2017). Basic information (surface wave magnitude, hypocentral location) on earthquakes was derived from the China Earthquake Network Center at website http://news.ceic.ac.cn/ (last accessed June 2017). The VS30 measurements for some stations were derived from the Next Generation Attenuation (NGA) site database of the Pacific Earthquake Engineering Research Center and are available for download at http://peer.berkeley.edu/nga/ (last accessed June 2017). This work was supported by the National Key R&D Program of China (no. 2017YFC1500801), National Natural Science Foundation of China (nos. 51808514 and 51878632), Natural Science Foundation of Heilongjiang Province (no. E2017065), and Science Foundation of the Institute of Engineering Mechanics, China Earthquake Administration (no. 2018B03). We sincerely appreciate the three anonymous reviewers for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruizhi Wen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Ren, Y., Wen, R. et al. Investigating the Contribution of Stress Drop to Ground-Motion Variability by Simulations Using the Stochastic Empirical Green’s Function Method. Pure Appl. Geophys. 176, 4415–4430 (2019). https://doi.org/10.1007/s00024-019-02185-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02185-5

Keywords

Navigation