Skip to main content
Log in

On the scale dependence of earthquake stress drop

  • ORIGINAL ARTICLE
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

We discuss the debated issue of scale dependence in earthquake source mechanics with the goal of providing supporting evidence to foster the adoption of a coherent interpretative framework. We examine the heterogeneous distribution of source and constitutive parameters during individual ruptures and their scaling with earthquake size. We discuss evidence that slip, slip-weakening distance and breakdown work scale with seismic moment and are interpreted as scale dependent parameters. We integrate our estimates of earthquake stress drop, computed through a pseudo-dynamic approach, with many others available in the literature for both point sources and finite fault models. We obtain a picture of the earthquake stress drop scaling with seismic moment over an exceptional broad range of earthquake sizes (−8 < MW < 9). Our results confirm that stress drop values are scattered over three order of magnitude and emphasize the lack of corroborating evidence that stress drop scales with seismic moment. We discuss these results in terms of scale invariance of stress drop with source dimension to analyse the interpretation of this outcome in terms of self-similarity. Geophysicists are presently unable to provide physical explanations of dynamic self-similarity relying on deterministic descriptions of micro-scale processes. We conclude that the interpretation of the self-similar behaviour of stress drop scaling is strongly model dependent. We emphasize that it relies on a geometric description of source heterogeneity through the statistical properties of initial stress or fault-surface topography, in which only the latter is constrained by observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abercrombie R, Leary P (1993) Source parameters of small earthquakes recorded at 2.5 km depth, Cajon Pass, southern California: implications for earthquake scaling. Geophys Res Lett 20:1511–1514. doi:10.1029/93GL00367

    Article  Google Scholar 

  • Abercrombie RE (1995) Using seismograms recorded at 2.5-km depth. J Geophys Res 100(B12):24015. doi:10.1029/95JB02397

    Article  Google Scholar 

  • Abercrombie R, Rice JR (2005) Can observations of earthquake scaling constrain slip weakening? Geophys J Int 162:406–424

    Article  Google Scholar 

  • Aki K (1996) Scale dependence in earthquake phenomenon and its relevance to earthquake prediction. Proc Natl Acad Sci U S A 93:3740–3747

    Article  Google Scholar 

  • Allmann BP, Shearer PM (2009) Global variations of stress drop for moderate to large earthquakes. J Geophys Res 114:B01310. doi:10.1029/2008JB005821

    Article  Google Scholar 

  • Andrews DJ (1976a) Rupture propagation with finite stress in antiplane strain. J Geophys Res 81:3575–3582

    Article  Google Scholar 

  • Andrews DJ (1976b) Rupture velocity of plane strain shear cracks. J Geophys Res 81(32):5679–5687

    Article  Google Scholar 

  • Andrews DJ (1980) A stochastic fault model, 1. Static case. J Geophys Res 85:3867–3877

    Article  Google Scholar 

  • Andrews DJ (1999) Test of two methods for faulting in finite-difference calculations, Bull Seismol Soc Am 89:931–937

  • Andrews DJ, Barall M (2011) Specifying initial stress for dynamic heterogeneous earthquake source models. Bull Seismol Soc Am 101(5):2408–2417. doi:10.1785/0120110012

    Article  Google Scholar 

  • Baltay A, Prieto G, Beroza GC (2010) Radiated seismic energy from coda measurements and no scaling in apparent stress with seismic moment. J Geophys Res 115:B08314. doi:10.1029/2009JB006736

    Article  Google Scholar 

  • Baltay A, Ide S, Prieto G, Beroza G (2011) Variability in earthquake stress drop and apparent stress. Geophys Res Lett 38:L06303. doi:10.1029/2011GL046698

    Article  Google Scholar 

  • Baltay AS, Beroza GC, Ide S (2014) Radiated energy of great earthquakes from teleseismic empirical Green’s function deconvolution. Pure Appl Geophys 171(10):2841–2862. doi:10.1007/s00024-014-0804-0

    Article  Google Scholar 

  • Beeler NM, Tullis TE, Blanpied ML, Weeks JD (1996) Frictional behavior of large displacement experimental faults. J Geophys Res 101(B4):8697–8715

    Article  Google Scholar 

  • Ben-Zion Y, Sammis CG (2003) Characterization of fault zones. Pure Appl Geophys 160:677–715. doi:10.1007/PL00012554

    Article  Google Scholar 

  • Ben-Zion Y, Dahmen K a, Uhl JT (2011) A unifying phase diagram for the dynamics of sheared solids and granular materials. Pure Appl Geophys 168(12):2221–2237. doi:10.1007/s00024-011-0273-7

    Article  Google Scholar 

  • Bizzarri A, Cocco M (2003) Slip-weakening behavior during the propagation of dynamic ruptures obeying to rate- and state-dependent friction laws. J Geophys Res 108(B8):2373. doi:10.1029/2002JB002198

    Article  Google Scholar 

  • Bizzarri A (2011) On the deterministic description of earthquakes. Rev Geophys 49:RG3002. doi:10.1029/2011RG000356

    Article  Google Scholar 

  • Boatwright J, Cocco M (1996) Frictional constraints on crustal faulting. J Geophys Res 101(B6):13895–13909

    Article  Google Scholar 

  • Bouchon M (1997) The state of stress on some faults of the San Andreas system as inferred from near-field strong motion data. J Geophys Res 102(B6):11731–11744

    Article  Google Scholar 

  • Broberg K (1978) On transient sliding motion. Geophys J R Astron Soc 52:397–432

    Article  Google Scholar 

  • Brune JN (1970) Tectonic stress and the spectra of shear waves from earthquakes. J Geophys Res 75:4997–5009

    Article  Google Scholar 

  • Calderoni G, Rovelli A, Singh SK (2013) Stress drop and source scaling of the 2009 April L’Aquila earthquakes. Geophys J Int 192(1):260–274. doi:10.1093/gji/ggs011

    Article  Google Scholar 

  • Candela T, Renard F, Bouchon M, Schmittbuhl J, Brodsky EE (2011) Stress drop during earthquakes: effect of fault roughness scaling. Bull Seismol Soc Am 101(No. 5):2369–2387. doi:10.1785/0120100298

    Article  Google Scholar 

  • Causse M, Dalguer LA, Mai PM (2014) Variability of dynamic source parameters inferred from kinematic models of past earthquakes. Geophys J Int 196:1754–1769. doi:10.1093/gji/ggt478

    Article  Google Scholar 

  • Cirella A, Piatanesi A, Tinti E, Cocco M (2008) Rupture process of the 2007 Niigata-ken Chuetsu-oki earthquake by non-linear joint inversion of strong motion and GPS data, Geophys Res Lett 35:L16306. doi:10.1029/2008GL034756

  • Cirella A, Piatanesi A, Tinti E, Chini M, Cocco M (2012) Complexity of the rupture process during the 2009 L’Aquila, Italy, earthquake. Geophys J Int 190:607–621

    Article  Google Scholar 

  • Cocco M, Spudich P, Tinti E (2006) On the mechanical work absorbed on faults during earthquake ruptures, in earthquakes: radiated energy and the physics of faulting, geophysical monograph series 170. Am Geophys Union. doi:10.1029/170GM24

    Google Scholar 

  • Cocco M, Tinti E (2008) Scale dependence in the dynamics of earthquake propagation: evidence from seismological and geological observations. Earth Planet Sci Lett 273:123–131

    Article  Google Scholar 

  • Cocco, M., Tinti, E., Marone, C. & Piatanesi, A., (2009). Scaling of slip weakening distance with final slip during dynamic earthquake rupture. In: Fukuyama E (ed) Fault-zone properties and earthquake rupture dynamics, International Geophysics Series, 94. Elsevier, Amsterdam, p 163–186

  • Day SM, Yu G, Wald DJ (1998) Dynamic stress changes during earthquake rupture. Bull Seismol Soc Am 88:512–522

    Google Scholar 

  • Di Toro G, Han R, Hirose T, De Paola N, Nielsen S, Mizoguchi K, Ferri F, Cocco M, Shimamoto T (2011) Fault lubrication during earthquakes. Nature 471:494e498. doi:10.1038/nature09838

    Google Scholar 

  • Dreger D, Nadeau RM, Chung A (2007) Repeating earthquake finite source models: strong asperities revealed on the San Andreas fault. Geophys Res Lett 34(23):1–5. doi:10.1029/2007GL031353

    Article  Google Scholar 

  • Fineberg J, Gross SP, Marder M, Swinney HL (1991) An instability in dynamic fracture. Phys Rev Lett 67:457

    Article  Google Scholar 

  • Fukuyama E, Madariaga R (1998) Rupture dynamics of a planar fault in a 3D elastic medium: rate- and slip-weakening friction. Bull Seismol Soc Am 88:1–17

    Google Scholar 

  • Goebel THW, Hauksson E, Shearer PM, Ampuero JP (2015) Stress-drop heterogeneity within tectonically complex regions: a case study of San Gorgonio Pass, southern California. Geophys J Int 202(1):514–528. doi:10.1093/gji/ggv160

    Article  Google Scholar 

  • Goodfellow SD, Young RP (2014) A laboratory acoustic emission experiment under in situ conditions. Geophys Res Lett 41:3422–3430. doi:10.1002/2014GL059965

    Article  Google Scholar 

  • Guatteri M, Spudich P (2000) What can strong-motion data tell us about slip-weakening fault-friction laws? Bull Seismol Soc Am 90:98–116

    Article  Google Scholar 

  • Harrington RM, Brodsky EE (2009) Source duration scales with magnitude differently for earthquakes on the San Andreas Fault and on secondary faults in Parkfield, California. Bull Seismol Soc Am 99(4):2323–2334

    Article  Google Scholar 

  • Herrmann RB, Malagnini L, Munafo I (2011) Regional Moment Tensors of the 2009, L’Aquila Earthquake Sequence. Bull Seismol Soc Am 101(3): 975–993

  • Ida Y (1972) Cohesive force across the tip of a longitudinal-shear crack and Griffith’s specific surface energy. J Geophys Res 77:3796–3805

    Article  Google Scholar 

  • Ide S, Beroza GC (2001) Does apparent stress vary with earthquake size. Geophys Res Lett 28:3349–3352

    Article  Google Scholar 

  • Ide S, Takeo M (1997) Determination of constitutive relations of fault slip based on seismic wave analysis. J Geophys Res 102(B12):27 379–27 391

    Article  Google Scholar 

  • Ide S, Beroza GC, Prejean SG, Ellsworth WL (2003) Apparent break in earthquake scaling due to path and site effects on deep borehole recordings. J Geophys Res 108(B5):2271. doi:10.1029/2001JB001617

    Article  Google Scholar 

  • Izutani Y, Kanamori H (2001) Scale-dependence of seismic energy- to-moment ratio for strike-slip earthquakes in Japan: Geophys. Res Lett 28(20):4007–4010

    Article  Google Scholar 

  • Kaneko Y, Shearer PM (2015) Variability of seismic source spectra, estimated stress drop, and radiated energy, derived from cohesive-zone models of symmetrical and asymmetrical circular and elliptical ruptures. J Geophys Res Solid Earth 120:1053–1079. doi:10.1002/2014JB011642

    Article  Google Scholar 

  • Kostrov BV, Das S (1988) Principles of earthquake source mechanics. Cambridge University Press, Cambridge ISBN 0-521-30345-1. 287

    Google Scholar 

  • Kwiatek G, Plenkers K, Dresen G (2011) Source parameters of picoseismicity recorded at Mponeng deep gold mine, South Africa: implications for scaling relations. Bull Seismol Soc Am 101(6):2592–2608. doi:10.1785/0120110094

    Article  Google Scholar 

  • Li VC (1987) Mechanics of shear rupture applied to earthquake zones. Fracture mechanics of rock. Academic Press, London, pp. 351–428

    Google Scholar 

  • Madariaga R (1976) Dynamics of an expanding circular fault. Bull Seismol Soc Am 66:639–666

    Google Scholar 

  • Malagnini L, Mayeda K, Nielsen S, Yoo SH, Munafò I, Rawles C, Boschi E (2014a). Scaling transition in earthquake sources: a possible link between seismic and laboratory measurements, Pure and Applied Geophysics. doi:10.1007/s00024-013-0749-8

  • Malagnini L, Munafò I, Cocco M, Nielsen S, Mayeda K, Boschi E (2014b) Gradual fault weakening with seismic slip: inferences from the seismic sequences of L’Aquila, 2009, and Northridge, 1994. Pure Appl Geophys 171(10):2709–2730

    Article  Google Scholar 

  • Marsan D (2006) Can coseismic stress variability suppress seismicity shadows? Insights from a rate-and-state friction model. J Geophys Res 111:B06305. doi:10.1029/2005JB004060

    Article  Google Scholar 

  • Mayeda K, Walter WR (1996) Moment, energy, stress drop, and source spectra of western United States earthquakes from regional coda envelopes. J Geophys Res 101:11,195–11,208. doi:10.1029/96JB00112

    Article  Google Scholar 

  • Mayeda K, Gök R, Walter WR, Hofstetter A (2005) Evidence for non-constant energy/moment scaling from coda-derived source spectra. Geophys Res Lett 32(10):L12301. doi:10.1029/2005GL022405

    Article  Google Scholar 

  • Mori J, Abercrombie RE, Kanamori H (2003) Stress drops and radiated energies of aftershocks of the 1994 Northridge, California, earthquake. J Geophys Res 108:2545. doi:10.1029/2001JB000474 B11

    Article  Google Scholar 

  • Nielsen S, Madariaga R (2003) On the self-healing fracture mode. Bull Seismol Soc Am 93(6):2375–2388

    Article  Google Scholar 

  • Nielsen S, Spagnuolo E, Smith SAF, Violay M, Di Toro G, Bistacchi A (2016) Scaling in natural and laboraory earthquakes. Geophys Res Lett 43. doi:10.1002/2015GL067490

  • Noda H, Lapusta N, Kanamori H (2013) Comparison of average stress drop measures for ruptures with heterogeneous stress change and implications for earthquake physics. Geophys J Int 193:1691–1712

    Article  Google Scholar 

  • Ohnaka M, Shen L (1999) Scaling of the share rupture process from nucleation to dynamic propagation: implication of geometry irregularity of the rupturing surfaces. J Geophys Res 104:817–844

    Article  Google Scholar 

  • Ohnaka M (2013) The physics of rock failure and earthquakes. Cambridge University Press, Cambridge www.cambridge.org/9781107030060, ISBN 978-1-107-03006-0

    Book  Google Scholar 

  • Okubo PG, Dieterich JH (1984) Effects of physical fault properties on frictional instabilities produced on simulated faults. J Geophys Res 89:5817–5827

    Article  Google Scholar 

  • Oth A (2013) On the characteristics of earthquake stress release variations in Japan. Earth Planet Sci Lett 377-378:132–141. doi:10.1016/j.epsl.2013.06.037

    Article  Google Scholar 

  • Oye V, Bungum H, Roth M (2005) Source parameters and scaling relations for mining-related seismicity within the Pyhasalmi ore mine, Finland. Bull Seismol Soc Am 95(3):1011–1026. doi:10.1785/0120040170

    Article  Google Scholar 

  • Power WL, Tullis TE, Brown SR, Boitnott GN, Scholz CH (1987) Roughness of natural fault surfaces. Geophys Res Lett 14:29–32

    Article  Google Scholar 

  • Power WL, Tullis TE, Weeks JD (1988) Roughness and wear during brittle faulting. J Geophys Res 93:15,268–15,278

    Article  Google Scholar 

  • Prieto GA (2004) Earthquake source scaling and self-similarity estimation from stacking P and S spectra. J Geophys Res 109(B8):B08310. doi:10.1029/2004JB003084

    Article  Google Scholar 

  • Prieto GA, Thomson DJ, Vernon FL, Shearer PM, Parker RL (2007) Confidence intervals for earthquake source parameters. Geophys J Int 168(3):1227–1234. doi:10.1111/j.1365-246X.2006.03257.x

    Article  Google Scholar 

  • Rice JR, Sammis CG, Parsons R (2005) Off-fault secondary failure induced by a dynamic slip-pulse. Bull Seismol Soc Am 95:109–134

    Article  Google Scholar 

  • Rice JR, Cocco M (2006) Seismic fault rheology and earthquake dynamics. In: Handy MR (ed) Dahlem workshop on the dynamics of fault zones. MIT Press, Cambridge, pp. 99–137

    Google Scholar 

  • Richardson E, Jordan TH (2002) Seismicity in deep gold mines of South Africa: implications for tectonic earthquakes. Bull Seismol Soc Am 92:1766–1782

    Article  Google Scholar 

  • Sagy A, Brodsky EE, Axen GJ (2007) Evolution of fault-surface roughness with slip. Geology 35(3):283–286. doi:10.1130/G23235A

    Article  Google Scholar 

  • Saleur H, Sammis CG, Sornett D (1996) Discrete scale invariance, complex fractal dimensions, and log-periodic fluctuations in seismicity. J Geophys Res 101(B8):17661–17677

    Article  Google Scholar 

  • Sato T, Hirasawa T (1973) Body wave spectra from propagating shear cracks. J Phys Earth 21:415–431

    Article  Google Scholar 

  • Scholz CH (1990) The mechanics of earthquakes and faulting. Cambridge University Press, Cambridge, New York, Port Chester, Melbourne, Sydney

    Google Scholar 

  • Schubnel A, Nielsen S, Taddeucci J, Vinciguerra S, Rao S (2011) Photo-acoustic study of subshear and supershear ruptures in the laboratory. Earth Planet Sci Lett 308:424–432. doi:10.1016/j.epsl.2011.06.013

    Article  Google Scholar 

  • Scuderi MM, Collettini C (2016) The role of fluid pressure in induced vs. triggered seismicity: insights from rock deformation experiments on carbonates. Sci Rep 6:24852. doi:10.1038/ srep24852

  • Spudich P, Guatteri M (2004) The effect of bandwidth limitations on the inference of earthquake slip-weakening distance from seismograms. Bull Seismol Soc Am 94:2028–2036

    Article  Google Scholar 

  • Tinti E, Spudich P, Cocco M (2005a) Earthquake fracture energy inferred from kinematic rupture models on extended faults. J Geophys Res 110:B12303. doi:10.1029/2005JB003644

    Article  Google Scholar 

  • Tinti E, Spudich P, Cocco M (2008) Correction to “earthquake fracture energy inferred from kinematic rupture models on extended faults”. J Geophys Res 113:B07301. doi:10.1029/2008JB005829

    Article  Google Scholar 

  • Tinti E, Fukuyama E, Piatanesi A, Cocco M (2005b) A kinematic source time function compatible with earthquake dynamics. Bull Seismol Soc Am 95(4):1211–1223

    Article  Google Scholar 

  • Tinti E, Cocco M, Fukuyama E, Piatanesi A (2009) Dependence of slip weakening distance (Dc) on final slip during dynamic rupture of earthquakes. Geophys J Int 177(3):1205–1220

    Article  Google Scholar 

  • Tse ST, Rice JR (1986) Crustal earthquake instability in relation to the depth variation of frictional slip properties. J Geophys Res 91(B9):9452–9472

    Article  Google Scholar 

  • Uchide T, Shearer PM, Imanishi K (2014) Stress drop variations among small earthquakes before the 2011 Tohoku-oki, Japan, earthquake and implications for the main shock. J Geophys Res Solid Earth 119:7164–7174. doi:10.1002/2014JB010943

    Article  Google Scholar 

  • Viesca RC, Garagash  DI (2015) Ubiquitous weakening of faults due to thermal pressurization. Nat Geosci 8:875–879. doi:10.1038/ngeo2554

  • Wald DJ, Heaton TH (1994) Spatial and temporal distribution of slip for the 1992 Landers, California, earthquake. Bull Seismol Soc Am 84(3):668–691

    Google Scholar 

  • Xia K, Rosakis AJ, Kanamori H (2004) Laboratory earthquakes: the sub-Rayleigh-to-supershear rupture transition. Science 303(5665):1859–1861

  • Yoo SH, Mayeda K (2013) Validation of Non-Self-Similar source scaling using ground motions from the 2008 Wells, Nevada, earthquake sequence. Bull Seismol Soc Am 103(4):2508–2519. doi:10.1785/0120120327

  • Walter WR, Mayeda K, Gok R, Hofstetter A (2006) The scaling of seismic energy with moment: simple models compared with observations, in earthquakes: radiated energy and the physics of faulting, geophysical monograph series 170. Am Geophys Union. doi:10.1029/170GM05

    Google Scholar 

  • Zollo A, Orefice A, Convertito V (2014) Source parameter scaling and radiation efficiency of microearthquakes along the Irpinia fault zone in southern Apennines, Italy. J Geophys Res Solid Earth 119. doi:10.1002/ 2013JB010116

Download references

Acknowledgments

We thank the associate editor and two anonymous reviewers for their useful criticisms, which contributed to improve the manuscript and to make it more accessible to readership. We thank Raul Madariaga, Shamita Das and Jean Virieux for inviting us to attend the symposium to honour the distinguished career of Prof. Raùl Madariaga, where we discussed with numerous scientists and colleagues. We are indebted with all the authors who kindly provided their stress drop estimates (A. Baltay, G. Calderoni, M. Causse, B. Ellsworth, T. Göbel, B. Goertz-Allmann, S. Goodfelow, K. Imanishi, G. Kwiatek, M.P. Mai, L. Malagnini, A. Oth, G. Prieto, T. Uchide, S.H. Yoo and A. Zollo). We thank M.M. Scuderi, C. Collettini, S. Nielsen, G. Di Toro and E. Spagnuolo for the useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Cocco.

Appendix

Appendix

We describe here the details of the calculations performed in this study for the 2009 L’Aquila earthquake. The pseudo-dynamic model is used to infer traction evolution and compute the distribution of dynamic parameters. The kinematic information has been taken from the model proposed by Cirella et al. (2012) jointly inverting GPS, DInSAR and strong motion data. We used the finite difference code proposed by Andrews (1999) and implemented by Tinti et al. (2005a). The adopted fault plane is 28 km long and 17.5 km wide. We adopted the same regularized Yoffe function as source time function (STF), used in Cirella et al. (2012), having a constant time to peak slip velocity equal to 0.225 s. We assume the heterogeneous distribution of peak slip velocity, rise time and rupture time inferred through the inversion of geophysical data. The spatial distributions of these source parameters are interpolated and smoothed for dynamic modelling following the scheme proposed by Tinti et al. (2005a) [see Appendix A in this manuscript]. The original spatial discretization is 3.5 Km. Our discretization interval is 0.35 km in space and 0.02 in time. We used the 1-D Earth model proposed by Herrmann et al. (2011) for central Italy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cocco, M., Tinti, E. & Cirella, A. On the scale dependence of earthquake stress drop. J Seismol 20, 1151–1170 (2016). https://doi.org/10.1007/s10950-016-9594-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-016-9594-4

Keywords

Navigation