Aki, K. (1973). Scattering of P waves under the Montana Lasa. Journal of Geophysical Research, 78(8), 1334–1346. https://doi.org/10.1029/JB078i008p01334.
Article
Google Scholar
Anthony, J. L., & Marone, C. (2005). Influence of particle characteristics on granular friction. Journal of Geophysical Research, 110, B08409. https://doi.org/10.1029/2004JB003399.
Article
Google Scholar
Benites, R., Aki, K., & Yomogida, Y. (1992). Multiple scattering of SH waves in 2-D media with many cavities. Pure and Applied Geophysics, 138(3), 353–390.
Article
Google Scholar
Biegel, R. L., Sammis, C. G., & Dieterich, J. H. (1989). The frictional properties of a simulated gouge having a fractal particle distribution. Journal of Structural Geology, 11(7), 827–846.
Article
Google Scholar
Byerlee, J. (1978). Friction of rocks. Pure and applied Geophysics, 116, 615–626.
Article
Google Scholar
Di Toro, G., Han, R., Hirose, T., De Paola, N., Nielsen, S., Mizoguchi, K., et al. (2011). Fault lubrication during earthquakes. Nature, 471, 494–498. https://doi.org/10.1038/nature09838.
Article
Google Scholar
Goldsby, D. L., & Tullis, T. E. (2011). Flash heating leads to low frictional strength of crustal rocks at earthquake slip rate. Science, 334, 216–218. https://doi.org/10.1126/science.1207902.
Article
Google Scholar
Greenwood, J. A., & Williamson, J. P. (1966). Contact of nominally flat surfaces. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 295(1442), 300–319. https://doi.org/10.1098/rspa.1966.0242.
Article
Google Scholar
Han, R., Hirose, T., Shimamoto, T., Lee, Y., & Ando, J. (2011). Granular nanoparticles lubricate faults during seismic slip. Geology, 39(6), 599–602. https://doi.org/10.1130/G31842.1.
Article
Google Scholar
Hirose, T., & Bystricky, M. (2007). Extreme dynamic weakening of faults during dehydration by coseismic shear heating. Geophysical Research Letters, 34, L14311. https://doi.org/10.1029/2007GL030049.
Article
Google Scholar
Hirose, T., & Shimamoto, T. (2003). Fractal dimension of molten surfaces as a possible parameter to infer the slip-weakening distance of faults from natural pseudotachylytes. Journal of Structural Geology, 25, 1569–1574.
Article
Google Scholar
Howell, D., & Behringer, R. P. (1999). Stress fluctuations in a 2D granular couette experiment: a continuous transition. Physical Review Letters, 82(26), 5241–5244.
Article
Google Scholar
Hudson, J. A. (1981). Wave speeds and attenuation of elastic waves in material containing cracks. Geophysical Journal International, 64, 133–150.
Article
Google Scholar
Hudson, J. A., & Knopoff, L. (1989). Predicting the overall properties of composite materials with small-scale inclusions or cracks. Pure and Applied Geophysics, 131(4), 551–576.
Article
Google Scholar
Jackson, I., Paterson, M. S., & Fitz Gerald, J. D. (1992). Seismic wave dispersion and attenuation in Åheim dunite: and experimental study. Geophysical Journal International, 108, 517–534.
Article
Google Scholar
Kawahara, J., Ohno, T., & Yomogida, K. (2010). Attenuation and dispersion of antiplane shear waves due to scattering by many two-dimensional cavities. Journal of the Acoustical Society of America, 125(6), 3589–3596. https://doi.org/10.1121/1.3124779.
Article
Google Scholar
Kawahara, J., & Yamashita, T. (1992). Scattering of elastic waves by a fracture zone containing randomly distributed cracks. Pure and Applied Geophysics, 139(1), 121–144.
Article
Google Scholar
Kelner, S., Bouchon, M., & Coutant, O. (1999). Numerical simulation of the propagation of P waves in fractured media. Geophysical Journal International, 137, 197–206.
Article
Google Scholar
Kendall, K., & Tabor, D. (1971). Au ultrasonic study of the area of contact between stationary and sliding surfaces. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 295, 300–319. https://doi.org/10.1098/rspa.1971.0108.
Google Scholar
Kern, H., Liu, B., & Popp, T. (1997). Relationship between anisotropy of P and S wave velocities and anisotropy of attenuation in serpentinite and amphibolite. Journal of Geophysical Research, 102(B2), 3015–3065.
Article
Google Scholar
Kikuchi, M. (1981). Dispersion and attenuation of elastic waves due to multiple scattering from inclusions. Physics of the Earth and Planetary Interiors, 25, 159–162.
Article
Google Scholar
Kilgore, B., Lozos, J., Beeler, N., & Oglesby, D. (2012). Laboratory observations of fault strength in response to changes in normal stress. Journal of Applied Mechanics, 79, 031007. https://doi.org/10.1115/1.4005883.
Article
Google Scholar
Kuroda, H. (2001). Two-dimensional heat flow analysis program using finite element method (p. 255). Tokyo: CQ Publishing Co. (In Japanese).
Google Scholar
Liu, E., Hudson, J. A., & Poitier, T. (2000). Equivalent medium representation of fractured rock. Journal of Geophysical Research, 105(B2), 2981–3000.
Article
Google Scholar
Liu, C. H., Nagel, S. R., Schecter, D. A., Coppersmith, S. N., & Majumdar, S. (1995). Force fluctuations in bead packs. Science, 269, 513–515.
Article
Google Scholar
Makedonska, N., Sparks, D. W., Aharonov, E., & Goren, L. (2011). Friction versus dilation revisited: insights from theoretical and numerical models. Journal of Geophysical Research, 116, B09302. https://doi.org/10.1029/2010JB008139.
Article
Google Scholar
Marone, C. (1991). A note on the stress-dilatancy relation for simulated fault gouge. Pure and Applied Geophysics, 137(4), 409–419.
Article
Google Scholar
Matsu’ura, M., Kataoka, H., & Shibazaki, B. (1992). Slip-dependent friction law and nucleation processes in earthquake rupture. Tectonophysics, 211, 135–148.
Article
Google Scholar
Mizoguchi, K., & Fukuyama, E. (2010). Laboratory measurements of rock friction at subseismic slip velocities. International Journal of Rock Mechanics and Mining Sciences, 47(8), 1363–1371. https://doi.org/10.1016/j.ijrmms.2010.08.013.
Article
Google Scholar
Mizoguchi, K., Hirose, T., Shimamoto, T., & Fukuyama, E. (2009). High-velocity frictional behavior and microstructure evolution of fault gouge obtained from Nojima fault, southwest Japan. Tectonophysics, 471, 285–296. https://doi.org/10.1016/j.tecto.2009.02.033.
Article
Google Scholar
Nagata, K., Kilgore, B., Beeler, N., & Nakatani, M. (2014). High-frequency imaging of elastic contrast and contact area with implications for naturally observed changes in fault properties. Journal of Geophysical Research: Solid Earth, 119, 5855–5875. https://doi.org/10.1002/2014JB011014.
Google Scholar
Nagata, K., Nakatani, M., & Yoshida, S. (2008). Monitoring frictional strength with acoustic wave transmission. Geophysical Research Letters, 35, L06310. https://doi.org/10.1029/2007GL033146.
Article
Google Scholar
Nagata, K., Nakatani, M., & Yoshida, S. (2012). A revised rate- and state-dependent friction law obtained by constraining constitutive and evolution laws separately with laboratory data. Journal of Geophysical Research, 117, B02314. https://doi.org/10.1029/2011JB008818.
Article
Google Scholar
Pyrak-Nolte, L. J., Myer, L. R., & Cook, N. G. W. (1990). Transmission of seismic waves across single natural fractures. Journal of Geophysical Research, 95(B6), 8617–8638.
Article
Google Scholar
Reches, Z., & Lockner, D. A. (2010). Fault weakening and earthquake instability by powder lubrication. Nature, 467, 452–455. https://doi.org/10.1038/nature09348.
Article
Google Scholar
Sato, H., & Fehler, M. C. (1997). Seismic Wave Propagation and Scattering in hte Heterogeneous Earth (p. 308). New York: Springer.
Google Scholar
Smith, S. A. F., Nielsen, S., & Di Toro, G. (2015). Strain localization and the onset of dynamic weakening in calcite fault gouge, Earth Planet. Sci. Lett., 413, 25–36. https://doi.org/10.1016/j.epsl.2014.12.043.
Google Scholar
Somfai, E., Roux, J.-N., Snoeijer, J. H., van Heche, M., & Saaloos, W. (2005). Elastic wave propagation in confined granular systems. Physical Review E, 72, 021301. https://doi.org/10.1103/PhysRevE.72.021301.
Article
Google Scholar
Tsutsumi, A., & Shimamoto, T. (1997). High-velocity frictional properties of gabbro. Geophysical Research Letters, 24(6), 699–702.
Article
Google Scholar
Tullis, T. E., & Weeks, J. D. (1986). Constitutive behavior and stability of frictional sliding of granite. Pure and Applied Geophysics, 124(3), 383–414.
Article
Google Scholar
Wilson, B., Dewers, T., Reches, Z., & Brune, J. (2005). Particle size and energetics of gouge from earthquake rupture zones. Nature, 434, 749–752.
Article
Google Scholar
Yamashita, T. (1990). Attenuation and dispersion of SH waves due to scattering by randomly distributed cracks. Pure and Applied Geophysics, 132, 545–568.
Article
Google Scholar
Yamashita, F., Fukuyama, E., & Mizoguchi, K. (2014). Probing the slip-weakening mechanism of earthquakes with electrical conductivity: rapid transition from asperity contact to gouge comminution. Geophysical Research Letters, 41, 341–347. https://doi.org/10.1002/2013GL058671.
Article
Google Scholar
Yamashita, F., Fukuyama, E., Mizoguchi, K., Takizawa, S., Xu, S., & Kawakata, H. (2015). Scale dependence of rock friction at high work rate. Nature, 528, 254–257. https://doi.org/10.1038/nature16138.
Article
Google Scholar
Yoshioka, N., & Sakaguchi, H. (2006). An experimental trial to detect nucleation processes by transmission waves across a simulated fault with a gouge layer. In W. H. Ip & Y. T. Chen (Eds.), Solid Earth (Vol. 1, pp. 105–116). Singapore: World Scientific.
Google Scholar