Skip to main content
Log in

Evidence of Non-extensivity in Earth’s Ambient Noise

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The study of ambient seismic noise is one of the important scientific and practical research challenges, due to its use in a number of geophysical applications. In this work, we describe Earth’s ambient noise fluctuations in terms of non-extensive statistical physics. We found that Earth’s ambient noise increments follow the q-Gaussian distribution. This indicates that Earth’s ambient noise’s fluctuations are not random and present long-term memory effects that could be described in terms of Tsallis entropy. Our results suggest that q values depend on the time length used and that the non-extensive parameter, q, converges to value q → 1 for short-time windows and a saturation value of q ≈ 1.33 for longer ones. The results are discussed from the point of view of superstatistics introduced by Beck [Contin Mech Thermodyn 16(3):293–304, 2004] and connects the q values with the system’s degrees of freedom. Our work indicates that the converged (maximum) value is q = 1.33 and is related to 5 degrees of freedom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abe, S., & Suzuki, N. (2003). Law for the distance between successive earthquakes. Journal of Geophysical Research, 108(B2), 19:1–19:4.

    Article  Google Scholar 

  • Abe, S., & Suzuki, N. (2005). Scale-free statistics of time interval between successive earthquakes. Physica A: Statistical Mechanics and its Applications, 350(2–4), 588–596.

    Article  Google Scholar 

  • Asgedom, E. G., Gelius, L. J., & Tygel, M. (2012). Seismic coherency measures in case of interfering events: A focus on the most promising candidates of higher-resolution algorithms. IEEE Signal Processing Magazine, 29(3), 47–56.

    Article  Google Scholar 

  • Beck, C. (2001). Dynamical foundations of nonextensive statistical mechanics. Physical Review Letters, 87(18), 180–601.

    Article  Google Scholar 

  • Beck, C. (2004). Superstatistics: Theory and applications. Continuum Mechanics and Thermodynamics, 16(3), 293–304.

    Article  Google Scholar 

  • Beck, C. (2006). Superstatistical Brownian motion. Progress of Theoretical Physics Supplement, 162, 29–36.

    Article  Google Scholar 

  • Beck, C., & Cohen, E. G. D. (2003). Superstatistics. Physica A: Statistical Mechanics and its Applications, 322, 267–275.

    Article  Google Scholar 

  • Beck, C., Cohen, E. G. D., & Swinney, H. L. (2005). From time series to superstatistics. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 72(5), 1–8.

    Article  Google Scholar 

  • Bonnefoy-Claudet, S., Cotton, F., & Bard, P. Y. (2006). The nature of noise wave field and its applications for site effects studies. A literature review. Earth-Science Reviews, 79(3–4), 205–227.

    Article  Google Scholar 

  • Burlaga, L. F., & Vinas, A. F. (2005). Tsallis distribution of the large-scale magnetic field strength fluctuations in the solar wind from 7 to 87 AU. Journal of Geophysical Research, 110, A07110.

    Article  Google Scholar 

  • Campillo, M. (2006). Phase and correlation in ‘random’ seismic fields and the reconstruction of the green function. Pure and Applied Geophysics, 163(2–3), 475–502.

    Article  Google Scholar 

  • Curtis, A., Gerstoft, P., Sato, H., Snieder, R., & Wapenaar, K. (2006). Seismic interferometry turning noise into signal. The Leading Edge, 25(9), 1082.

    Article  Google Scholar 

  • Efstathiou, A., Tzanis, A., & Vallianatos, F. (2015). Evidence of non extensivity in the evolution of seismicity along the San Andreas Fault, California, USA: An approach based on Tsallis statistical physics. Physics and Chemistry of the Earth, 85–86, 56–68.

    Article  Google Scholar 

  • Groos, J. C., & Ritter, J. R. R. (2009). Time domain classification and quantification of seismic noise in an urban environment. Geophysical Journal International, 179(2), 1213–1231.

    Article  Google Scholar 

  • Hloupis, G., Papadopoulos, I., Makris, J. P., & Vallianatos, F. (2013). The South Aegean seismological network—HSNC. Advances in Geosciences, 34, 15–21.

    Article  Google Scholar 

  • Kalimeri, M., Papadimitriou, C., Balasis, G., & Eftaxias, K. (2008). Dynamical complexity detection in pre-seismic emissions using nonadditive Tsallis entropy. Physica A: Statistical Mechanics and its Applications, 387(5–6), 1161–1172.

    Article  Google Scholar 

  • Larose, E., Carriere, S., Voisin, C., Bottelin, P., Baillet, L., Gueguen, P., et al. (2015). Environmental seismology: What can we learn on earth surface processes with ambient noise? Journal of Applied Geophysics, 116, 62–74.

    Article  Google Scholar 

  • Nakamura, Y. (1989). A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Quarterly Report of RTRI, Railway Technical Research Institute, 30, 25–34.

    Google Scholar 

  • Papadakis, G., Vallianatos, F., & Sammonds, P. (2013). Evidence of nonextensive statistical physics behavior of the Hellenic Subduction Zone seismicity. Tectonophysics, 608, 1037–1048.

    Article  Google Scholar 

  • Papadakis, G., Vallianatos, F., & Sammonds, P. (2014). A nonextensive statistical physics analysis of the 1995 Kobe, Japan earthquake. Pure and Applied Geophysics, 172, 1923–1931.

    Article  Google Scholar 

  • Papadakis, G., Vallianatos, F., & Sammonds, P. (2016). Non-extensive statistical physics applied to heat flow and the earthquake frequency-magnitude distribution in Greece. Physica A: Statistical Mechanics and its Applications, 456, 135–144.

    Article  Google Scholar 

  • Potirakis, S. M., Minadakis, G., & Eftaxias, K. (2012). Analysis of electromagnetic pre-seismic emissions using Fisher information and Tsallis entropy. Physica A: Statistical Mechanics and its Applications, 391(1–2), 300–306.

    Article  Google Scholar 

  • Ramirez-Rojas, A., & Flores-Marquez, E. L. (2011). Non-extensivity analysis of seismicity occurred within four subduction regions in Mexico. Geophysical Research Abstracts, 13(3), 5242.

    Google Scholar 

  • Sanchez-Sesma, F. J., Rodriguez, M., Iturraran-Viveros, U., Luzon, F., Campillo, M., Margerin, L., et al. (2011). A theory for microtremor H/V spectral ratio: Application for a layered medium. Geophysical Journal International, 186(1), 221–225.

    Article  Google Scholar 

  • Sengbush, R. L., & Foster, M. R. (1972). Design and application of optimal velocity filters in seismic exploration. IEEE Transactions on Computers, C-21(7), 648–654.

    Article  Google Scholar 

  • Shapiro, N. M., & Campillo, M. (2004). Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophysical Research Letters, 31(7), 8–11.

    Article  Google Scholar 

  • Tang, G., & Ma, J. (2011). Application of total-variation-based curvelet shrinkage for three-dimensional seismic data denoising. IEEE Geoscience and Remote Sensing Letters, 8(1), 103–107.

    Article  Google Scholar 

  • Telesca, L. (2010). Analysis of Italian seismicity by using a nonextensive approach. Tectonophysics, 494(1–2), 155–162.

    Article  Google Scholar 

  • Telesca, L. (2011). Tsallis-based nonextensive analysis of the southern California seismicity. Entropy, 13(7), 1267–1280.

    Article  Google Scholar 

  • Telesca, L., Lovallo, M., Alcaz, V., & Ilies, I. (2015). Site-dependent organization structure of seismic microtremors. Physica A: Statistical Mechanics and its Applications, 421, 541–547.

    Article  Google Scholar 

  • Tsallis, C. (1999). Nonextensive statistics: Theoretical, experimental and computational evidences and connections. Brazilian Journal of Physics, 29(1), 1–35.

    Article  Google Scholar 

  • Tsallis, C. (2009). Introduction to nonextensive statistical mechanics—Approaching a Complex World (pp. 1–382). New York: Springer.

    Google Scholar 

  • Vallianatos, F. (2011). A non-extensive statistical physics approach to the polarity reversals of the geomagnetic field. Physica A: Statistical Mechanics and its Applications, 390(10), 1773–1778.

    Article  Google Scholar 

  • Vallianatos, F., & Sammonds, P. (2011). A non-extensive statistics of the fault-population at the Valles Marineris extensional province, Mars. Tectonophysics, 509(1–2), 50–54.

    Article  Google Scholar 

  • Vallianatos, F. Triantis, D., & Sammonds, P. (2011a). Non-extensivity of the isothermal depolarization relaxation currents in uniaxial compressed rocks. Europhysics Letters, 94(6), 1–5.

    Article  Google Scholar 

  • Vallianatos, F., Kokinou, E., & Sammonds, P. (2011b). Non-extensive statistical physics approach to fault population distribution. A case study from the southern Hellenic arc (Central Crete). Acta Geophysica, 59(4), 770–784.

    Article  Google Scholar 

  • Vallianatos, F., Benson, P., Meredith, P., & Sammonds, P. (2012). Experimental evidence of a non-extensive statistical physics behavior of fracture in triaxially deformed Etna basalt using acoustic emissions. Europhysics Letters, 97(58002), 2012.

    Google Scholar 

  • Vallianatos, F., Michas, G., Benson, P., & Sammonds, P. (2013). Natural time analysis of critical phenomena: The case of acoustic emissions in triaxially deformed Etna basalt. Physica A: Statistical Mechanics and its Applications, 392(20), 5172–5178.

    Article  Google Scholar 

  • Vallianatos, F., Karakostas, V., & Papadimitriou, E. (2014). A non-extensive statistical physics view in the spatiotemporal properties of the 2003 (Mw6.2) Lefkada, Ionian Island Greece, aftershock sequence. Pure and Applied Geophysics, 171(7), 1343–1534. doi:10.1007/s00024-013-0706-6.

    Article  Google Scholar 

  • Vallianatos, F., Michas, G., & Papadakis, G. (2015). A description of seismicity based on non-extensive statistical physics: A review. In S. D’Amico Earthquakes and Their Impact on Society. Springer Natural Hazard. Berlin: Springer. ISBN:978-331921753-6;978-331921752-9.

  • Vallianatos, F., Papadakis, G., & Michas, G. (2016). Generalized statistical mechanics approaches to earthquakes and tectonics. Proceedings of the Royal Society A. doi:10.1098/rspa.2016.0497.

    Google Scholar 

  • Vilar, C. S., França, G. S., Silva, R., & Alcaniz, J. S. (2007). Nonextensivity in geological faults? Physica A: Statistical Mechanics and its Applications, 377(1), 285–290.

    Article  Google Scholar 

  • Wang, P., Chang, Z., Wang, H., & Lu, H. (2015). Scale-invariant structure of earthquake energy fluctuations for different faulting styles. The European Physical Journal B, 88(8), 206.

    Article  Google Scholar 

  • Xu, D., & Beck, C. (2015). Transition from lognormal to Chi square superstatistics for financial time series. Physica A: Statistical Mechanics and its Applications, 453, 173–183.

    Article  Google Scholar 

  • Zhong, T., Li, Y., Wu, N., Nie, P., & Yang, B. (2015). Statistical analysis of background noise in seismic prospecting. Geophysical Prospecting, 63(5), 1161–1174.

    Article  Google Scholar 

Download references

Acknowledgements

This is a contribution of the UNESCO Chair on Solid Earth Physics and Geohazards Risk Reduction. Project “Seismic response assessments of minarets and important high rise historical and monumental structures in Crete (Greece)”, CFS-1711 n. 4500329348. We would like to thank Georgios Michas for his help in the q-fitting algorithm and Georgios Hatzopoulos for his valuable help and discussions regarding the operation of HSNC. Comments by two referees and the valuable suggestions by the Editor Dr. Eric Geist significantly improve the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Filippos Vallianatos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koutalonis, I., Vallianatos, F. Evidence of Non-extensivity in Earth’s Ambient Noise. Pure Appl. Geophys. 174, 4369–4378 (2017). https://doi.org/10.1007/s00024-017-1669-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1669-9

Keywords

Navigation