Skip to main content
Log in

A Stress Condition in Aquifer Rock for Detecting Anomalous Radon Decline Precursory to an Earthquake

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Recurrent groundwater radon anomalous declines were observed from well measurements in the Antung hot spring area (eastern Taiwan) prior to five of six earthquakes that occurred between 2003 and 2011 (M w range 5.0–6.8). The relationship between the detectability of radon anomalies and the first motions of P-waves was investigated. Based on the first motions of P-waves recorded near the investigated well, a precursory decrease in groundwater radon can be detected only when the first motion is compression. No precursory change in groundwater radon concentration was observed for the downward first motion of P-waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

(a), (b), (c), and (d) from Kuo (2014)

Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Attanasio, A., & Maravalle, M. (2016). Some considerations between radon and earthquakes in the crater of L’Aquila. Natural Hazards, 81, 1971–1979. doi:10.1007/s11069-016-2169-4.

    Article  Google Scholar 

  • Brace, W. F., Paulding, B. W., Jr., & Scholz, C. H. (1966). Dilatancy in the fracture of crystalline rocks. Journal Geophysical Research, 71, 3939–3953. doi:10.1029/JZ071i016p03939.

    Article  Google Scholar 

  • Carminati, E., Doglioni, C., & Barbab, S. (2004). Reverse migration of seismicity on thrusts and normal faults. Earth Science Reviews, 65, 195–222. doi:10.1016/S0012-8252(03)00083-7.

    Article  Google Scholar 

  • Chen, W. S., & Wang, Y. (1996). Geology of the Coastal Range, eastern Taiwan. Geology of Taiwan 7. Central Geological Survey, Taiwan.

  • Doglionia, C., Barbab, S., Carminatia, E., & Riguzzib, F. (2011). Role of the brittle–ductile transition on fault activation. Physics of the Earth and Planetary Interiors, 184, 160–171. doi:10.1016/j.pepi.2010.11.005.

    Article  Google Scholar 

  • Doglionia, C., Barbab, S., Carminatia, E., & Riguzzib, F. (2013). Fault on–off versus coseismic fluids reaction. GSF, 5, 767–780. doi:10.1016/j.gsf.2013.08.004.

    Google Scholar 

  • Erees, F. S., Aytas, S., Sac, M. M., Yener, G., & Salk, M. (2007). Radon concentrations in thermal waters related to seismic events along faults in the Denizli Basin, Western Turkey. Radiation Measurements, 42, 80–86. doi:10.1016/j.radmeas.2006.06.003.

    Article  Google Scholar 

  • Hashemi, S. M., Negarestani, A., Namvaran, M., & Musavi Nasab, S. M. (2013). An analytical algorithm for designing radon monitoring network to predict the location and magnitude of earthquakes. Journal of Radioanalytical and Nuclear Chemistry, 295, 2249–2262. doi:10.1007/s10967-012-2310-0.

    Article  Google Scholar 

  • Hauksson, E. (1981). Radon content of groundwater as an earthquake precursor: evaluation of worldwide data and physical basis. Journal Geophysical Research, 86, 9397–9410. doi:10.1029/JB086iB10p09397.

    Article  Google Scholar 

  • Hsu, T. L. (1962). Recent faulting in the Longitudinal Valley of eastern Taiwan. Geological Society of China, 1, 95–102.

    Google Scholar 

  • Igarashi, G., Saeki, S., Takahata, N., Sumikawa, K., Tasaka, S., Sasaki, Y., et al. (1995). Ground-water radon anomaly before the Kobe earthquake in Japan. Science, 269, 60–61. doi:10.1126/science.269.5220.60.

    Article  Google Scholar 

  • Kuo, T. (2014). Correlating precursory declines in groundwater radon with earthquake magnitude. Ground Water, 52, 217–224. doi:10.1111/gwat.12049.

    Article  Google Scholar 

  • Kuo, T., Fan, K., Kuochen, H., & Chen, W. (2006a). A mechanism for anomalous decline in radon precursory to an earthquake. Ground Water, 44, 642–647. doi:10.1111/j.1745-6584.2006.00219.x.

    Google Scholar 

  • Kuo, T., Fan, K., Kuochen, H., Han, Y., Chu, H., & Lee, Y. (2006b). Anomalous decrease in groundwater radon before the Taiwan M6.8 Chengkung earthquake. Journal of Environmental Radioactivity, 88, 101–106. doi:10.1016/j.jenvrad.2006.01.005.

    Article  Google Scholar 

  • Namvaran, M., & Negarestani, A. (2013). Measuring the radon concentration and investigating the mechanism of decline prior an earthquake (Jooshan, SE of Iran). Journal of Radioanalytical and Nuclear Chemistry, 298, 1–8. doi:10.1007/s10967-013-2162-7.

    Article  Google Scholar 

  • Noguchi, M. (1964). New method of radon activity measurement with liquid scintillator. Radioisotopes, 13, 362–367. doi:10.3769/radioisotopes.13.5_362.

    Article  Google Scholar 

  • Noguchi, M., & Wakita, H. (1977). A method for continuous measurement of radon in groundwater for earthquake prediction. Journal Geophysical Research, 82, 1353–1357. doi:10.1029/JB082i008p01353.

    Article  Google Scholar 

  • Nur, A. (1972). Dilatancy, pore fluids, and premonitory variations of ts/tp travel times. Bulletin of the Seismological Society of America, 62, 1217–1222.

    Google Scholar 

  • Papastefanou, C. (2002). An overview of instrumentantion for measuring radon in soil gas and groundwaters. Journal of Environmental Radioactivity, 63, 271–283. doi:10.1016/S0265-931X(02)00034-6.

    Article  Google Scholar 

  • Scholz, C. H., Sykes, L. R., & Aggarwal, Y. P. (1973). Earthquake prediction: a physical basis. Science, 181, 803–810. doi:10.1126/science.181.4102.803.

    Article  Google Scholar 

  • Shapiro, M. H., Melvin, J. D., & Tombrello, T. A. (1980). Automated radon monitoring at a hard-rock site in the southern California transverse ranges. Journal Geophysical Research, 85, 3058–3064. doi:10.1029/JB085iB06p03058.

    Article  Google Scholar 

  • Shearer, P. M. (2009). Introduction to seismology. Cambridge, UK: Cambridge University Press.

    Book  Google Scholar 

  • Tarakçı, M., Harmanşah, C., Saç, M. M., & İçhedef, M. (2014). Investigation of the relationships between seismic activities and radon level in western Turkey. Applied Radiation and Isotopes, 83, 12–17. doi:10.1016/j.apradiso.2013.10.008.

    Article  Google Scholar 

  • Torgersen, T., Benoit, J., & Mackie, D. (1990). Controls on groundwater Rn-222 concentrations in fractured rock. Geophys. Res. Lett., 17, 845–848. doi:10.1029/GL017i006p00845.

    Article  Google Scholar 

  • Tuccimei, P., Mollo, S., Soligo, M., Scarlato, P., & Castelluccio, M. (2015). Real-time setup to measure radon emission during rock deformation: implications for geochemical surveillance. Geoscientific Instrumentation, Methods and Data Systems, 4, 111–119. doi:10.5194/gi-4-111-2015.

    Article  Google Scholar 

  • Wakita, H., Nakamura, Y., Notsu, K., Noguchi, M., & Asada, T. (1980). Radon anomaly: a possible precursor of the 1978 Izu-Oshima-kinkai earthquake. Science, 207, 882–883. doi:10.1126/science.207.4433.882.

    Article  Google Scholar 

  • Yalim, H. A., Sandıkcıoğlua, A., Ünala, R., & Orhunb, Ö. (2007). Measurements of radon concentrations in well waters near the Akşehir fault zone in Afyonkarahisar, Turkey. Radiation Measurements, 42, 505–508. doi:10.1016/j.radmeas.2006.12.013.

    Article  Google Scholar 

  • Zmazek, B., Todorovski, L., Živčić, M., Džeroski, S., Vaupotiča, J., & Kobala, I. (2006). Radon in a thermal spring: identification of anomalies related to seismic activity. Applied Radiation and Isotopes, 64, 725–734. doi:10.1016/j.apradiso.2005.12.016.

    Article  Google Scholar 

Download references

Acknowledgements

Supports by the Ministry of Science and Technology Taiwan (NSC, MOST), Central Geological Surveys, Industrial Technology Research Institute (L550001060, N550003318), Radiation Monitoring Center, and Institute Earth Sciences of Academia Sinica of Taiwan are appreciated. The authors are grateful to Mr. C. Lin of the Antung hot spring for his kind field assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, T., Kuochen, H., Ho, C. et al. A Stress Condition in Aquifer Rock for Detecting Anomalous Radon Decline Precursory to an Earthquake. Pure Appl. Geophys. 174, 1291–1301 (2017). https://doi.org/10.1007/s00024-016-1461-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-016-1461-2

Keywords

Navigation