Skip to main content
Log in

An analytical algorithm for designing radon monitoring network to predict the location and magnitude of earthquakes

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Continuous radon monitoring in soil and groundwater is one of the useful methods in earthquake prediction process. There are many published studies on geochemical precursors to seismic activity, both reporting the detection of validated precursory phenomena. The research on geochemical precursory algorithms is aimed at defining quantitative relations between seismogenic parameters and endogenetic components. This paper presents a new analytical algorithm that can be used to estimate optimum location and magnitude of coming earthquakes based on variations in radon concentration or any other geochemical precursors. In a real life application of this algorithm, radon monitoring network for Kerman province has been designed and the resulting data have been investigated. This practical example corroborates the proposed algorithm as well and the resulting seismogenic parameters e.g. location and magnitude have been obtained within their acceptable ranges. Furthermore, the proposed algorithm emphasizes on hot-springs which have the most effect on results around target zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. International Association of Seismology and Physics of the Earth’s Interior (www.iaspei.org).

  2. International Institute of Earthquake Engineering & Seismology (www.iiees.ac.ir).

References

  1. Lahr J, Chouet B, Stephens C, Power J, Page R (1994) Earthquake classification, location, and error analysis in a volcanic environment: implications for the magmatic system of the 1989–1990 eruptions at Redoubt Volcano, Alaska. J Volcanol Geotherm Res 62(1):137–151

    Article  Google Scholar 

  2. Sibson RH (1983) Continental fault structure and the shallow earthquake source. J Geol Soc 140(5):741–767

    Article  Google Scholar 

  3. Namvaran M, Negarestani A (2012) Measuring the radon concentration and investigating the mechanism of decline prior an earthquake (Jooshan, SE of Iran). J Radioanal Nucl Chem:1–8. doi:10.1007/s10967-012-2162-7

  4. Toutain J-P, Baubron J-C (1999) Gas geochemistry and seismotectonics: a review. Tectonophysics 304(1–2):1–27. doi:10.1016/s0040-1951(98)00295-9

    Article  CAS  Google Scholar 

  5. Negarestani A, Setayeshi S, Ghannadi-Maragheh M, Akashe B (2003) Estimation of the radon concentration in soil related to the environmental parameters by a modified Adaline neural network. Appl Radiat Isot 58(2):269–273. doi:10.1016/s0969-8043(02)00304-4

    Article  CAS  Google Scholar 

  6. Ghosh D, Deb A, Sengupta R (2009) Anomalous radon emission as precursor of earthquake. J Appl Geophys 69(2):67–81. doi:10.1016/j.jappgeo.2009.06.001

    Article  Google Scholar 

  7. Musavi Nasab S, Negarestani A, Mohammadi S (2011) Modeling of the radon exhalation from water to air by a hybrid electrical circuit. J Radioanal Nucl Chem 288(3):813–818. doi:10.1007/s10967-011-1003-4

    Article  CAS  Google Scholar 

  8. Kuo T, Su C, Chang C, Lin C, Cheng W, Liang H, Lewis C, Chiang C (2010) Application of recurrent radon precursors for forecasting large earthquakes (Mw > 6.0) near Antung, Taiwan. Radiat Meas 45(9):1049–1054. doi:10.1016/j.radmeas.2010.08.009

    Article  CAS  Google Scholar 

  9. Chyi LL, Quick TJ, Yang TF, Chen CH (2010) The experimental investigation of soil gas radon migration mechanisms and its implication in earthquake forecast. Geofluids 10(4):556–563. doi:10.1111/j.1468-8123.2010.00308.x

    Article  CAS  Google Scholar 

  10. Porstendörfer J (1994) Properties and behaviour of radon and thoron and their decay products in the air. J Aerosol Sci 25(2):219–263

    Article  Google Scholar 

  11. Qureshi A, Khan H, Jafri E, Tufail M (1991) Radon signals for geological explorations. Int J Radiat Appl Instrum D 19(1–4):383–384

    CAS  Google Scholar 

  12. Papastefanou C (2002) An overview of instrumentation for measuring radon in soil gas and groundwaters. J Environ Radioact 63(3):271–283

    Article  CAS  Google Scholar 

  13. Kagan YY, Jackson DD (1991) Long‐term earthquake clustering. Geophys J Int 104(1):117–134

    Article  Google Scholar 

  14. Keilis-Borok V (1996) Intermediate-term earthquake prediction. Proc Natl Acad Sci USA 93(9):3748

    Article  CAS  Google Scholar 

  15. Etiope G, Calcara M, Quattrocchi F (1997) Seismogeochemical algorithms for earthquake prediction: an overview. Annali Di Geofisica 40:1483–1492

    Google Scholar 

  16. Wyss M (1991) Evaluation of proposed earthquake precursors. Eos Trans Am Geophys Union 72(441):445–446

    Google Scholar 

  17. Singh M, Ramola RC, Singh B, Singh S, Virk HS (1991) Subsurface soil gas radon changes associated with earthquakes. Int J Radiat Appl Instrum D 19(1–4):417–420. doi:10.1016/1359-0189(91)90229-b

    CAS  Google Scholar 

  18. Yasuoka Y, Ishii T, Tokonami S, Ishikawa T, Narazaki Y, Shinogi M (2005) Radon anomaly related to the 1995 Kobe earthquake in Japan. Int Congr Ser 1276:426–427. doi:10.1016/j.ics.2004.10.011

    Article  Google Scholar 

  19. Wyss M, Booth DC (1997) The IASPEI procedure for the evaluation of earthquake precursors. Geophys J Int 131(3):423–424

    Article  Google Scholar 

  20. Zavyalov A (2005) Medium-term prediction of earthquakes from a set of criteria: Principles, methods, and implementation. Russ J Earth Sci 7(1):51–73

    Article  Google Scholar 

  21. Dobrovolsky IP, Zubkov SI, Miachkin VI (1979) Estimation of the size of earthquake preparation zones. Pure Appl Geophys 117(5):1025–1044. doi:10.1007/bf00876083

    Article  Google Scholar 

  22. Keilis-Borok V, Kossobokov V (1990) Premonitory activation of earthquake flow: algorithm M8. Phys Earth Planet Inter 61(1–2):73–83

    Article  Google Scholar 

  23. Keilis-Borok V, Rotwain I (1990) Diagnosis of time of increased probability of strong earthquakes in different regions of the world: algorithm CN. Phys Earth Planet Inter 61(1–2):57–72

    Article  Google Scholar 

  24. Tsunomori F, Kuo T (2010) A mechanism for radon decline prior to the 1978 Izu-Oshima-Kinkai earthquake in Japan. Radiat Meas 45(1):139–142. doi:10.1016/j.radmeas.2009.08.003

    Article  CAS  Google Scholar 

  25. Walker RT, Talebian M, Saiffori S, Sloan RA, Rasheedi A, MacBean N, Ghassemi A (2010) Active faulting, earthquakes, and restraining bend development near Kerman city in southeastern Iran. J Struct Geol 32(8):1046–1060. doi:10.1016/j.jsg.2010.06.012

    Article  Google Scholar 

  26. Walker RT (2006) A remote sensing study of active folding and faulting in southern Kerman province, S.E. Iran. J Struct Geol 28(4):654–668. doi:10.1016/j.jsg.2005.12.014

    Article  Google Scholar 

  27. Shahabpour J (2005) Tectonic evolution of the orogenic belt in the region located between Kerman and Neyriz. J Asian Earth Sci 24(4):405–417. doi:10.1016/j.jseaes.2003.11.007

    Article  Google Scholar 

  28. Mohajer-Ashjai A, Behzadi H, Berberian M (1975) Reflections on the rigidity of the Lut Block and recent crustal deformation in eastern Iran. Tectonophysics 25(3–4):281–301. doi:10.1016/0040-1951(75)90066-9

    Article  Google Scholar 

  29. Berberian M, Asudeh I, Arshadi S (1979) Surface rupture and mechanism of the Bob-Tangol (southeastern Iran) earthquake of 19 December 1977. Earth Planet Sci Lett 42(3):456–462. doi:10.1016/0012-821x(79)90055-4

    Article  Google Scholar 

  30. Berberian M (1995) Master “blind” thrust faults hidden under the Zagros folds: active basement tectonics and surface morphotectonics. Tectonophysics 241(3–4):193–224. doi:10.1016/0040-1951(94)00185-c

    Article  Google Scholar 

  31. Nussbaum E, Harsh JB (1958) Radon solubility in fatty acids and triglycerides. J Phys Chem 62(1):81–84

    Article  CAS  Google Scholar 

  32. Shahpasandzadeh M, Heidari M (1996) Report of initial investigation of seismotectonic and earthquake faulting risk in Kerman province zone; Mordad 1375 (in persian language), vol 1. IIEES publication

Download references

Acknowledgments

The authors are extremely grateful to Dr. Alireza Ahmadi & Mr. Ehsan Mehrabi-Kermani for editing text & Mr. Mohsen Bagheri for his guides in drawing figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Mehdi Hashemi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hashemi, S.M., Negarestani, A., Namvaran, M. et al. An analytical algorithm for designing radon monitoring network to predict the location and magnitude of earthquakes. J Radioanal Nucl Chem 295, 2249–2262 (2013). https://doi.org/10.1007/s10967-012-2310-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-012-2310-0

Keywords

Navigation