Skip to main content
Log in

Intermediate Field Representation for Positive Matrix and Tensor Interactions

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

In this paper we introduce an intermediate field representation for random matrices and random tensors with positive (stable) interactions of degree higher than 4. This representation respects the symmetry axis responsible for positivity. It is non-perturbative and allows to prove that such models are Borel–Le Roy summable of the appropriate order in their coupling constant. However, we have not been able yet to associate a convergent loop vertex expansion with this representation; hence, our Borel summability result is not of the optimal expected form when the size N of the matrix or of the tensor tends to infinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. Note added: Between submission and acceptance of this paper this problem has been solved: The Borel radius has been indeed proved in the matrix case not to shrink as \(N \rightarrow \infty \) [72].

  2. We can extend these formulas to the case \(C=0\) by defining \(\mathrm{d}\mu \) in this case to be the Dirac measure at the origin.

  3. We decided to put the N dependence on the Borel radius and none on \(\epsilon \). Other choices could include an N dependence on \(\epsilon \) but would lead to contour integrals no longer defined in the large N limit.

  4. This is the crucial property from the point of view of gravity quantization since it allows to associate with the dual space a canonical discretized Einstein–Hilbert action.

  5. Beware, however, that the optimal scaling s is not known for general tensor invariants [70].

  6. We use a simplifying notation to have clearer expressions. The sum over a color set J here means a sum for variables indexed with each color in J.

References

  1. Constructive Quantum Field Theory. Springer Lecture Notes in Physics, vol. 25 (1973)

  2. Glimm, J., Jaffe, A.: Quantum Physics, A Functional Integral Point of View. Springer, Berlin (1987)

    MATH  Google Scholar 

  3. Rivasseau, V.: From Perturbative to Constructive Renormalization. Princeton University Press, Princeton (1991)

    Book  Google Scholar 

  4. Eckmann, J.-P., Magnen, J., Sénéor, R.: Decay properties and Borel summability for the Schwinger functions in \(P(\phi )_{2}\) theories. Commun. Math. Phys. 39, 251 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  5. Magnen, J., Sénéor, R.: Phase space cell expansion and Borel summability for the Euclidean \(\phi _{3}^{4}\) theory. Commun. Math. Phys. 56, 237 (1977)

    Article  ADS  Google Scholar 

  6. Feldman, J., Magnen, J., Rivasseau, V., Sénéor, R.: A renormalizable field theory: the massive Gross–Neveu model in two-dimensions. Commun. Math. Phys. 103, 67 (1986). https://doi.org/10.1007/BF01464282

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Rivasseau, V.: The tensor track, III. Fortsch. Phys. 62, 81 (2014). arXiv:1311.1461 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Regge, T.E.: General relativity without coordinates. Nuovo Cim. 19, 558–571 (1961)

    Article  ADS  MathSciNet  Google Scholar 

  9. Ambjorn, J.: Simplicial Euclidean and Lorentzian quantum gravity. arXiv:gr-qc/0201028

  10. Loll, R., Ambjorn, J., Jurkiewicz, J.: The universe from scratch. Contemp. Phys. 47, 103–117 (2006). arXiv:hep-th/0509010

    Article  ADS  Google Scholar 

  11. Ambjorn, J., Görlich, A., Jurkiewicz, J., Loll, R.: Causal dynamical triangulations and the search for a theory of quantum gravity. Int. J. Mod. Phys. D 22, 1330019 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  12. Boulatov, D.V.: A model of three-dimensional lattice gravity. Mod. Phys. Lett. A 7, 1629 (1992). arXiv:hep-th/9202074

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Freidel, L.: Group field theory: an overview. Int. J. Theor. Phys. 44, 1769 (2005). arXiv:hep-th/0505016

    Article  MathSciNet  MATH  Google Scholar 

  14. Krajewski, T.: Group field theories. PoS QGQGS 2011, 005 (2011). arXiv:1210.6257

    Google Scholar 

  15. Ben Geloun, J., Magnen, J., Rivasseau, V.: Bosonic colored group field theory. Eur. Phys. J. C 70, 1119 (2010). arXiv:0911.1719

    Article  ADS  Google Scholar 

  16. David, F.: A model of random surfaces with nontrivial critical behavior. Nucl. Phys. B 257, 543 (1985)

    Article  ADS  Google Scholar 

  17. Kazakov, V.A.: Bilocal regularization of models of random surfaces. Phys. Lett. B 150, 282 (1985)

    Article  ADS  Google Scholar 

  18. Di Francesco, P., Ginsparg, P.H., Zinn-Justin, J.: 2-D Gravity and random matrices. Phys. Rep. 254, 1 (1995). arxiv:hep-th/9306153

    Article  ADS  MathSciNet  Google Scholar 

  19. Grosse, H., Wulkenhaar, R.: Renormalisation of phi**4 theory on noncommutative R**4 in the matrix base. Commun. Math. Phys. 256, 305 (2005). arXiv:hep-th/0401128

    Article  ADS  MATH  Google Scholar 

  20. Grosse, H., Wulkenhaar, R.: The beta function in duality covariant noncommutative phi**4 theory. Eur. Phys. J. C 35, 277 (2004). arxiv:hep-th/0402093

    Article  ADS  MATH  Google Scholar 

  21. Disertori, M., Rivasseau, V.: Two and three loops beta function of non commutative Phi(4)**4 theory. Eur. Phys. J. C 50, 661 (2007). arxiv:hep-th/0610224

    Article  ADS  MATH  Google Scholar 

  22. Disertori, M., Gurau, R., Magnen, J., Rivasseau, V.: Vanishing of beta function of non commutative Phi**4(4) theory to all orders. Phys. Lett. B 649, 95 (2007). arxiv:hep-th/0612251

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Grosse, H., Wulkenhaar, R.: Progress in solving a noncommutative quantum field theory in four dimensions. arXiv:0909.1389

  24. Grosse, H., Wulkenhaar, R.: Self-dual noncommutative \(\phi ^4\)-theory in four dimensions is a non-perturbatively solvable and non-trivial quantum field theory. arXiv:1205.0465

  25. Grosse, H., Wulkenhaar, R.: Solvable 4D noncommutative QFT: phase transitions and quest for reflection positivity. arXiv:1406.7755 [hep-th]

  26. Grosse, H., Wulkenhaar, R.: On the fixed point equation of a solvable 4D QFT model. arXiv:1505.05161 [math-ph]

  27. Ambjorn, J., Durhuus, B., Jonsson, T.: Three-dimensional simplicial quantum gravity and generalized matrix models. Mod. Phys. Lett. A 6, 1133 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Sasakura, N.: Tensor model for gravity and orientability of manifold. Mod. Phys. Lett. A 6, 2613 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Gross, M.: Tensor models and simplicial quantum gravity in \(>\) 2-D. Nucl. Phys. Proc. Suppl. 25A, 144 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Hooft, G.’t: A planar diagram theory for strong interactions. Nucl. Phys. B 72, 461 (1974)

    Article  ADS  Google Scholar 

  31. Gurau, R.: Colored group field theory. Commun. Math. Phys. 304, 69 (2011). https://doi.org/10.1007/s00220-011-1226-9. arXiv:0907.2582 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Gurau, R., Ryan, J.P.: Colored tensor models—a review. SIGMA 8, 020 (2012). https://doi.org/10.3842/SIGMA.2012.020. arXiv:1109.4812 [hep-th]

    MathSciNet  MATH  Google Scholar 

  33. Gurau, R.: Universality for random tensors. Ann. Inst. H. Poincare Probab. Stat. 50(4), 1474 (2014). https://doi.org/10.1214/13-AIHP567. arXiv:1111.0519 [math.PR]

    Article  MathSciNet  MATH  Google Scholar 

  34. Bonzom, V., Gurau, R., Rivasseau, V.: Random tensor models in the large N limit: uncoloring the colored tensor models. Phys. Rev. D 85, 084037 (2012). https://doi.org/10.1103/PhysRevD.85.084037. arXiv:1202.3637 [hep-th]

    Article  ADS  Google Scholar 

  35. Gurau, R.: The 1/N expansion of colored tensor models. Ann. H. Poincare 12, 829 (2011). https://doi.org/10.1007/s00023-011-0101-8. arXiv:1011.2726 [gr-qc]

    Article  MathSciNet  MATH  Google Scholar 

  36. Gurau, R., Rivasseau, V.: The 1/N expansion of colored tensor models in arbitrary dimension. Europhys. Lett. 95, 50004 (2011). https://doi.org/10.1209/0295-5075/95/50004. arXiv:1101.4182 [gr-qc]

    Article  ADS  Google Scholar 

  37. Gurau, R.: The complete 1/N expansion of colored tensor models in arbitrary dimension. Ann. H. Poincare 13, 399 (2012). https://doi.org/10.1007/s00023-011-0118-z. arXiv:1102.5759 [gr-qc]

    Article  MathSciNet  MATH  Google Scholar 

  38. Bonzom, V.: New 1/N expansions in random tensor models. JHEP 1306, 062 (2013). https://doi.org/10.1007/JHEP06(2013)062. arXiv:1211.1657 [hep-th]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Bonzom, V., Delepouve, T., Rivasseau, V.: Enhancing non-melonic triangulations: a tensor model mixing melonic and planar maps. Nucl. Phys. B 895, 161 (2015). https://doi.org/10.1016/j.nuclphysb.2015.04.004. arXiv:1502.01365 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Bonzom, V.: Large \(N\) limits in tensor models: towards more universality classes of colored triangulations in dimension \(d\ge 2\). arXiv:1603.03570 [math-ph]

  41. Ben Geloun, J., Rivasseau, V.: A Renormalizable 4-dimensional tensor field theory. arXiv:1111.4997

  42. Ben Geloun, J., Rivasseau, V.: Addendum to ’A renormalizable 4-dimensional tensor field theory. Commun. Math. Phys. 322, 957 (2013). arXiv:1209.4606

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Samary, D.O., Vignes-Tourneret, F.: Just renormalizable TGFT’s on \(U(1)^{d}\) with gauge invariance. arXiv:1211.2618

  44. Carrozza, S., Oriti, D., Rivasseau, V.: Renormalization of tensorial group field theories: Abelian U(1) models in four dimensions. arXiv:1207.6734

  45. Carrozza, S., Oriti, D., Rivasseau, V.: Renormalization of an SU(2) tensorial group field theory in three dimensions. arXiv:1303.6772

  46. Ben Geloun, J.: Renormalizable models in rank \(d\ge 2\) tensorial group field theory. arXiv:1306.1201

  47. Ben Geloun, J., Samary, D.O.: 3D tensor field theory: renormalization and one-loop \(\beta \)-functions. Ann. H. Poincare 14, 1599 (2013). arXiv:1201.0176

    Article  MathSciNet  MATH  Google Scholar 

  48. Ben Geloun, J.: Two and four-loop \(\beta \)-functions of rank 4 renormalizable tensor field theories. Class. Quant. Grav. 29, 235011 (2012). arXiv:1205.5513

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Ben Geloun, J.: Asymptotic freedom of rank 4 tensor group field theory. arXiv:1210.5490

  50. Samary, D.O.: Beta functions of \(U(1)^d\) gauge invariant just renormalizable tensor models. arXiv:1303.7256

  51. Rivasseau, V.: Why are tensor field theories asymptotically free? Europhys. Lett. 111(6), 60011 (2015). https://doi.org/10.1209/0295-5075/111/60011. arXiv:1507.04190 [hep-th]

    Article  ADS  Google Scholar 

  52. Rivasseau, V.: Constructive tensor field theory. arXiv:1603.07312 [math-ph]

  53. Rivasseau, V.: Constructive matrix theory. JHEP 0709, 008 (2007). https://doi.org/10.1088/1126-6708/2007/09/008. arXiv:0706.1224 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  54. Magnen, J., Noui, K., Rivasseau, V., Smerlak, M.: Scaling behaviour of three-dimensional group field theory. Class. Quant. Grav. 26, 185012 (2009). arXiv:0906.5477 [hep-th]

    Article  ADS  MATH  Google Scholar 

  55. Gurau, R.: The 1/N expansion of tensor models beyond perturbation theory. Commun. Math. Phys. 330, 973 (2014). arXiv:1304.2666 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Delepouve, T., Gurau, R., Rivasseau, V.: Universality and Borel summability of arbitrary quartic tensor models. arXiv:1403.0170 [hep-th]

  57. Gurau, R., Krajewski, T.: Analyticity results for the cumulants in a random matrix model. arXiv:1409.1705 [math-ph]

  58. Magnen, J., Rivasseau, V.: Constructive \(\phi ^4\) field theory without tears. Ann. H. Poincaré 9, 403 (2008). arXiv:0706.2457 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  59. Rivasseau, V., Wang, Z.: How to resum Feynman graphs. Ann. H. Poincaré 15(11), 2069 (2014). arXiv:1304.5913 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  60. Rivasseau, V., Wang, Z.: Corrected loop vertex expansion for \(\Phi _2^4\) theory. J. Math. Phys. 56(6), 062301 (2015). arXiv:1406.7428 [math-ph]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Zhao, F.-J.: Inductive approach to loop vertex expansion. arXiv:1809.01615

  62. Erbin, H., Lahoche, V., Tamaazousti, M.: Constructive expansion for quartic vector fields theories. I. Low dimensions. arXiv:1904.05933 [hep-th]

  63. Brydges, D., Kennedy, T.: Mayer expansions and the Hamilton–Jacobi equation. J. Stat. Phys. 48, 19 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  64. Abdesselam, A., Rivasseau, V.: Trees, forests and jungles: a botanical garden for cluster expansions. arXiv:hep-th/9409094

  65. Delepouve, T., Rivasseau, V.: Constructive tensor field theory: the \(T^4_3\) model. arXiv:1412.5091 [math-ph]

  66. Lahoche, V.: Constructive tensorial group field theory I: the \(U(1)-T^4_3\) model. arXiv:1510.05050 [hep-th]

  67. Lahoche, V.: Constructive tensorial group field theory II: the \(U(1)-T^4_4\) model. arXiv:1510.05051 [hep-th]

  68. Gurau, R., Rivasseau, V.: The multiscale loop vertex expansion. Ann. H. Poincaré 16(8), 1869 (2015). arXiv:1312.7226 [math-ph]

    Article  MathSciNet  MATH  Google Scholar 

  69. Bonzom, V.: Multicritical tensor models and hard dimers on spherical random lattices. Phys. Lett. A 377, 501 (2013). https://doi.org/10.1016/j.physleta.2012.12.022. arXiv:1201.1931 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  70. Bonzom, V., Lionni, L., Rivasseau, V.: Colored triangulations of arbitrary dimensions are stuffed Walsh maps. arXiv:1508.03805

  71. Lionni, L., Rivasseau, V.: Note on the intermediate field representation of \(\Phi ^2k\) theory in zero dimension. arXiv:1601.02805

  72. Krajewski, T., Rivasseau, V., Sazonov, V.: Constructive matrix theory for higher order interaction. arXiv:1712.05670 [math-ph]

  73. Sokal, A.D.: An improvement of Watson’s theorem on Borel summability. J. Math. Phys. 21, 261 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  74. Ferri, M., Gagliardi, C.: Crystallization moves. Pac. J. Math. 100, 85–103 (1982)

    Article  MATH  Google Scholar 

  75. Ferri, M., Gagliardi, C., Grasselli, L.: A graph-theoretical representation of PL-manifolds—a survey on crystallizations. Aequ. Math. 31, 121–141 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  76. Lins, S.: Gems, Computers and Attractors for 3-Manifolds. Series on Knots and Everything, vol. 5. World Scientific Publishing Co., Inc., River Edge, NJ (1995)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Rivasseau.

Additional information

Communicated by Krzysztof Gawedzki.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lionni, L., Rivasseau, V. Intermediate Field Representation for Positive Matrix and Tensor Interactions. Ann. Henri Poincaré 20, 3265–3311 (2019). https://doi.org/10.1007/s00023-019-00833-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-019-00833-z

Navigation