Skip to main content
Log in

\(\mathbb {C}P^{2S}\) Sigma Models Described Through Hypergeometric Orthogonal Polynomials

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

The main objective of this paper is to establish a new connection between the Hermitian rank-1 projector solutions of the Euclidean \(\mathbb {C}P^{2S}\) sigma model in two dimensions and the particular hypergeometric orthogonal polynomials called Krawtchouk polynomials. We show that any Veronese subsequent analytical solutions of the \(\mathbb {C}P^{2S}\) model, defined on the Riemann sphere and having a finite action, can be explicitly parametrized in terms of these polynomials. We apply these results to the analysis of surfaces associated with \(\mathbb {C}P^{2S}\) models defined using the generalized Weierstrass formula for immersion. We show that these surfaces are homeomorphic to spheres in the \(\mathfrak {su}(2s+1)\) algebra and express several other geometrical characteristics in terms of the Krawtchouk polynomials. Finally, a connection between the \(\mathfrak {su}(2)\) spin-s representation and the \(\mathbb {C}P^{2S}\) model is explored in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Din, A.M., Zakrzewski, W.J.: General classical solutions in the \(\mathbb{C}P^{N-1}\) model. Nucl. Phys. B 174, 397–406 (1980)

    Article  ADS  Google Scholar 

  2. Din, A.M., Zakrzewski, W.J.: Properties of general classical \(\mathbb{C}P^{N-1}\) solutions. Phys. Lett. B 95, 426–430 (1980)

    Article  ADS  Google Scholar 

  3. Borchers, H.J., Graber, W.D.: Local theory of solutions for the \(O(2k+1)\) sigma model. Commun. Math. Phys. 72, 77–102 (1980)

    Article  ADS  Google Scholar 

  4. Sasaki, R.: General class of solutions of the complex Grassmannian and \(\mathbb{C}P^{N-1}\) sigma models. Phys. Lett. B 130, 69–72 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  5. Eells, J., Wood, J.C.: Harmonic maps from surfaces to complex projective space. Adv. Math. 49, 217–263 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. Uhlembeck, K.: Harmonic maps into Lie groups, classical solutions of the chiral model. J. Differ. Geom. 30, 1–50 (1989)

    Article  MathSciNet  Google Scholar 

  7. Mikhailov, A.V.: Integrable magnetic models Solitons. In: Trullinger, S.E. et al. (ed.) Modern Problems in Condensed Matter, vol. 17. North–Holland, Amsterdam (1986)

  8. Zakharov, V.E., Mikhailov, A.V.: Relativistically invariant two-dimensional models of field theory which are integral by means of the inverse scattering problem method. Sov. Phys. JEPT 47, 1017–1027 (1978)

    ADS  Google Scholar 

  9. Bobenko, A.I.: Surfaces in terms of 2 by 2 matrices. Old and new integrable cases. In: Fordy, A.P., Woodm, J.C. (eds.) Harmonic Maps and Integrable Systems. Aspects of Mathematics, vol. E 23. Vieweg+Teubner Verlag, Wiesbaden (1994)

    Google Scholar 

  10. Chern, S., Wolfson, J.: Harmonic maps of the two-sphere into a complex Grassmann manifold II. Ann. Math. 125(2), 301–335 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Guest, M.A.: Harmonic Maps, Loop Groups, and Integrable Systems. Cambridge University Press, Cambridge (1997)

    Book  MATH  Google Scholar 

  12. Helein, F.: Constant Mean Curvature Surfaces, Harmonic Maps and Integrable Systems. Birkhauser, Boston (2001)

    Book  MATH  Google Scholar 

  13. Manton, N., Sutcliffe, P.: Topological Solutions. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  14. Babelon, O., Bernard, D., Talon, M.: Introduction to Classical Integrable Systems. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  15. Polyakov, A.M.: Gauge fields and strings contemp. Concepts Phys. 3, 1–301 (1987)

    ADS  Google Scholar 

  16. Grundland, A.M., Strasburger, A., Dziewa-Dawidczyk, D.: \({\mathbb{C}}P^{N}\) sigma models via the \(SU(2)\) coherent states approach, 5Oth seminar Sophus Lie Banach Center publications, vol. 13, pp. 169–191 (2017)

  17. Krawtchouk, M.: Sur une généralisation des polynômes d’Hermite. C. R. Math. 189, 620–622 (1929)

    MATH  Google Scholar 

  18. Zakrzewski, W.J.: Low Dimensional Sigma Models. Bristol Hilger, Cambridge (1989)

    MATH  Google Scholar 

  19. Bolton, J., Jensen, G.R., Rigoli, M., Woodward, L.M.: On conformal minimal immersion of \(S^2\) into \(\mathbb{C}P^N\). Math. Ann. 279, 599–620 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Goldstein, P.P., Grundland, A.M.: Invariant recurrence relations for \(\mathbb{C}P^{N-1}\) models. J. Phys. A Math. Theor. 43(265206), 1–18 (2010)

    Google Scholar 

  21. Grundland, A.M., Strasburger, A., Zakrzewski, W.J.: Surfaces immersed in \(su(N+1)\) Lie algebras obtained from the \(\mathbb{C}P^N\) sigma models. J. Phys. A Math. Gen. 39, 9187–9213 (2005)

    Article  ADS  MATH  Google Scholar 

  22. Goldstein, P.P., Grundland, A.M.: Invariant description of \(\mathbb{C}P^{N-1}\) sigma models. Theor. Math. Phys. 168, 939–950 (2011)

    Article  Google Scholar 

  23. Koekoek, R., Swarttouw, R.F.: The Askey-Scheme of Hypergeometric Orthogonal Polynomials and Its q-Analogue. Technical Report, Department of Technical Mathematics and Informatics, Delft University of Technology (1994)

  24. Sym, A.: Soliton surfaces. Lett. Nuovo Cimento 33, 394–400 (1982)

    Article  MathSciNet  Google Scholar 

  25. Goldstein, P.P., Grundland, A.M.: On a stack of surfaces obtained from the \(\mathbb{C}P^{N-1}\) sigma models. J. Phys. A Math. Theor. 51(095201), 1–13 (2018)

    MATH  Google Scholar 

  26. Goldstein, P.P., Grundland, A.M., Post, S.: Soliton surfaces associated with sigma models: differential and algebraic aspects. J. Phys. A Math. Theor. 45(395208), 1–19 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Schiff, L.I.: Quantum Mechanics. McGraw-Hill, New York (1949)

    Google Scholar 

  28. Merzbacher, E.: Quantum Mechanics. Wiley, New York (1998)

    MATH  Google Scholar 

  29. Do Carmo, M.P.: Riemannian Geometry. Birkhauser, Boston (1992)

    Book  MATH  Google Scholar 

  30. Nomizu, K., Sasaki, T.: Affine Differential Geometry. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  31. Konopelchenko, B.G.: Induced surfaces and their integrable dynamics. Stud. Appl. Math. 96, 9–51 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Grundland, A.M., Yurdusen, I.: On analytic descriptions of two-dimensional surfaces associated with the \(\text{ CP }^N-1\) sigma model. J. Phys. A Math. Theor. 42(172001), 1–5 (2009)

    MATH  Google Scholar 

  33. Goldstein, P.P., Grundland, A.M.: On the surfaces associated with \(\mathbb{C}P^{N-1}\) models. J. Phys. Conf. Ser. 284(012031), 1–9 (2011)

    Google Scholar 

  34. Helgason, S.: Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press, New York (1978)

    MATH  Google Scholar 

  35. Wolfram Research. http://functions.wolfram.com/Hy pergeometricFunctions/Hypergeometric2F1. Accessed Apr 2019

Download references

Acknowledgements

This research was supported by the NSERC operating grant of one of the authors (A.M.G.). N.C. is indebted to the Centre de Recherches Mathématiques (CRM) for the opportunity to hold a CRM-Simons professorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Crampe.

Additional information

Communicated by Nikolai Kitanine.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Properties of the Krawtchouk Polynomials

Properties of the Krawtchouk Polynomials

In this appendix, we recall and prove useful properties of the Krawtchouk polynomials and of the projectors \(P_k\) (3.6) According to R. Koekoek [23], the properties of the Krawtchouk polynomials follow directly from their definition

$$\begin{aligned} K_j(k; p, 2s) = {}_2 F_{1}\left( -j, -k; -2s; 1/p\right) , \qquad 0\le j,k\le 2s, \end{aligned}$$
(A.1)

where we recall that \(0<p={\textstyle {\xi _+\xi _-\over 1+\xi _+\xi _-}}<1\). In view of the formula (1.10.6) from [23], the Krawtchouk polynomial forward shift operator is

$$\begin{aligned} K_j(k+1; p, 2s) - K_j(k; p, 2s) = -\, {\textstyle {\displaystyle j\over \displaystyle 2sp}}K_{j-1}(k;p,2s-1). \end{aligned}$$
(A.2)

Lemma A.1

The first derivative with respect to \(\xi _\pm \) of the Krawtchouk polynomials are given by

$$\begin{aligned} \partial K_j(k;p,2s)&= {\textstyle {\displaystyle -k\over \displaystyle \xi _+(1+\xi _+\xi _-)}}(K_j(k;p,2s)-K_{j}(k-1;p,2s)), \end{aligned}$$
(A.3)
$$\begin{aligned} \overline{\partial }K_j(k;p,2s)&= {\textstyle {\displaystyle -k\over \displaystyle \xi _-(1+\xi _+\xi _-)}}(K_j(k;p,2s)-K_{j}(k-1;p,2s)). \end{aligned}$$
(A.4)

Proof

We recall the formula for the derivative of the hypergeometric function

$$\begin{aligned} {\textstyle {\partial \over \partial x}} \left( {}_{2}F_{1}(a, b; c; x)\right) = {\textstyle {\displaystyle ab\over \displaystyle c}}\ {}_{2}F_{1}(a+1, b+1; c+1; x). \end{aligned}$$
(A.5)

Hence, from the definition (A.1), we can evaluate the first derivatives with respect to \(\xi _+\) of the Krawtchouk polynomial

$$\begin{aligned} \partial K_j\left( k; {\textstyle {\xi _+\xi _-\over (1+\xi _+\xi _-)}}, 2s\right)&= \partial \left( {}_{2}F_{1}\left( -j, -k; -2s; {\textstyle {1+\xi _+\xi _-\over \xi _+\xi _-}}\right) \right) \nonumber \\&= -{\textstyle {\xi _-\over (\xi _+\xi _-)^2}}\left( {\textstyle {-jk\over 2s}}\right) {}_{2}F_{1}\left( -j+1, -k+1; -2s+1; {\textstyle {1+\xi _+\xi _-\over \xi _+\xi _-}}\right) \nonumber \\&={\textstyle {1\over \xi _+^2\xi _-}}{\textstyle {jk\over 2s}}K_{j-1}(k-1; p, 2s-1). \end{aligned}$$
(A.6)

In view of (A.2), we obtain the expression (A.3). Similarly, we obtain the relation (A.4). \(\square \)

Lemma A.2

The following orthogonality relations hold

$$\begin{aligned}&\sum _{q=0}^{2s}\left( {\begin{array}{c}2s\\ q\end{array}}\right) (\xi _+\xi _-)^q K_q(k)K_q(\ell ) = {\textstyle {\displaystyle (1+\xi _+\xi _-)^{2s}\over \displaystyle (\xi _+\xi _-)^{k}\left( {\begin{array}{c}2s\\ k\end{array}}\right) }} \ \delta _{k,\ell }, \end{aligned}$$
(A.7)
$$\begin{aligned}&\sum _{q=0}^{2s}\left( {\begin{array}{c}2s\\ q\end{array}}\right) (\xi _+\xi _-)^q \,q\, K_q^2 = {\textstyle {\displaystyle (1+\xi _+\xi _-)^{2s-1}\over \displaystyle (\xi _+\xi _-)^{k}\left( {\begin{array}{c}2s\\ k\end{array}}\right) }}(k+(2s-k)\xi _+\xi _-), \end{aligned}$$
(A.8)
$$\begin{aligned}&\sum _{q=0}^{2s}\left( {\begin{array}{c}2s\\ q\end{array}}\right) (\xi _+\xi _-)^q \,q\, K_qK_q(k-1) = -{\textstyle {\displaystyle (1+\xi _+\xi _-)^{2s-1}\over \displaystyle (\xi _+\xi _-)^{k-1}\left( {\begin{array}{c}2s\\ k\end{array}}\right) }}(2s-k+1), \end{aligned}$$
(A.9)
$$\begin{aligned}&\sum _{q=0}^{2s}\left( {\begin{array}{c}2s\\ q\end{array}}\right) (\xi _+\xi _-)^q \,q^2\, K_q^2 = {\textstyle {\displaystyle (1+\xi _+\xi _-)^{2s-2}\over \displaystyle (\xi _+\xi _-)^{k}\left( {\begin{array}{c}2s\\ k\end{array}}\right) }} \left( (\xi _+\xi _-)^2(k-2s)^2\right. \nonumber \\&\qquad \qquad \quad \qquad \qquad \qquad \left. +\,2\xi _+\xi _-(4sk-2k^2+s)+k^2\right) . \end{aligned}$$
(A.10)

Proof

Relation (A.7) is directly obtained from [23]. Let us now differentiate the orthogonality relation (A.7) (for \(\ell =k\)) with respect to \(\xi _+\). By using (A.3), one gets

$$\begin{aligned}&\sum _{q=0}^{2s}\left( {\begin{array}{c}2s\\ q\end{array}}\right) q\xi _+^{q-1}\xi _-^{q}K_q^2 - {\textstyle {\displaystyle 2k\over \displaystyle \xi _+(1+\xi _+\xi _-)}} \sum _{q=0}^{2s}\left( {\begin{array}{c}2s\\ q\end{array}}\right) (\xi _+\xi _-)^qK_q(K_q-K_q(k-1))\nonumber \\&\quad = {\textstyle {\displaystyle (1+\xi _+\xi _-)^{2s-1}\left[ 2s\xi _+\xi _- - k(1+\xi _+\xi _-)\right] \over \displaystyle \xi _+(\xi _+\xi _-)^{k}\left( {\begin{array}{c}2s\\ k\end{array}}\right) }}. \end{aligned}$$
(A.11)

Therefore, by again using (A.7), we get (A.8). Similarly, by differentiating the orthogonality relation (A.7) with respect to \(\xi _+\) (for \(\ell =k-1\)), one gets (A.9). Finally, we differentiate relation (A.8) to get relation (A.10). \(\square \)

Let us recall that the Krawtchouk polynomials are self-dual i.e., they satisfy

$$\begin{aligned} K_j(k)=K_k(j). \end{aligned}$$
(A.12)

Therefore, from Lemma A.2, one gets the other orthogonality properties

$$\begin{aligned}&\sum _{k=0}^{2s}\left( {\begin{array}{c}2s\\ k\end{array}}\right) (\xi _+\xi _-)^k K_j(k)K_\ell (k) = {\textstyle {\displaystyle (1+\xi _+\xi _-)^{2s}\over \displaystyle (\xi _+\xi _-)^{j}\left( {\begin{array}{c}2s\\ j\end{array}}\right) }}\ \ \delta _{j,\ell }, \end{aligned}$$
(A.13)
$$\begin{aligned}&\sum _{k=0}^{2s}\left( {\begin{array}{c}2s\\ k\end{array}}\right) (\xi _+\xi _-)^k \,k\, K_j^2(k) = {\textstyle {\displaystyle (1+\xi _+\xi _-)^{2s-1}\over \displaystyle (\xi _+\xi _-)^{j}\left( {\begin{array}{c}2s\\ j\end{array}}\right) }}(j+(2s-j)\xi _+\xi _-), \end{aligned}$$
(A.14)
$$\begin{aligned}&\sum _{k=0}^{2s}\left( {\begin{array}{c}2s\\ k\end{array}}\right) (\xi _+\xi _-)^k \,k\, K_j(k)K_{j-1}(k) = -{\textstyle {\displaystyle (1+\xi _+\xi _-)^{2s-1}\over \displaystyle (\xi _+\xi _-)^{j-1}\left( {\begin{array}{c}2s\\ j\end{array}}\right) }}(2s-j+1). \end{aligned}$$
(A.15)

Let us also remark that

$$\begin{aligned} \sum _{k=0}^{2s}\left( {\begin{array}{c}2s\\ k\end{array}}\right) (\xi _+\xi _-)^k \,k\, K_j(k)K_{\ell }(k) = 0 \qquad \text {if}\quad \ell \ne k,k\pm 1\ . \end{aligned}$$
(A.16)

In our notation, the difference equation satisfied by the Krawtchouk polynomials (see (1.10.5) of [23]) read

$$\begin{aligned} -p(2s-k)K_j(k+1)+(k-j+2p(s-k))K_j-k(1-p)K_j(k-1)=0\;.\nonumber \\ \end{aligned}$$
(A.17)

Lemma A.3

The following relation between the Krawtchouk polynomials holds

$$\begin{aligned} {\textstyle {\displaystyle 1\over \displaystyle 1+\xi _+\xi _-}}\left[ 2(s-j)K_j+\xi _+\xi _-(2s-j)K_{j+1}-{\textstyle {\displaystyle j\over \displaystyle \xi _+\xi _-}}K_{j-1} \right] =(2s-k)K_j(k+1).\nonumber \\ \end{aligned}$$
(A.18)

Proof

By using the following properties of the hypergeometric functions [35]

$$\begin{aligned}&(b-c){}_{2}F_{1}\left( a, b-1; c; x\right) +(c-a-b){}_{2}F_{1}\left( a, b; c; x\right) \nonumber \\&\quad = a(x-1){}_{2}F_{1}\left( a+1, b; c; x\right) . \end{aligned}$$
(A.19)

one deduces that

$$\begin{aligned} K_j(k+1)={\textstyle {\displaystyle 1\over \displaystyle 2s-k}}\left[ (2s-j-k)K_j-{\textstyle {\displaystyle j\over \displaystyle \xi _+\xi _-}}K_{j-1} \right] . \end{aligned}$$
(A.20)

Then, by replacing \(K_j(k+1)\) in (A.18) in the above formula, we see that (A.18) is equivalent to the recurrence relation of the Krawtchouk polynomial (see (1.10.3) of [23]) which concludes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crampe, N., Grundland, A.M. \(\mathbb {C}P^{2S}\) Sigma Models Described Through Hypergeometric Orthogonal Polynomials. Ann. Henri Poincaré 20, 3365–3387 (2019). https://doi.org/10.1007/s00023-019-00830-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-019-00830-2

Mathematics Subject Classification

Navigation