Self-Gravitating Klein–Gordon Fields in Asymptotically Anti-de-Sitter Spacetimes

Abstract

We initiate the study of the spherically symmetric Einstein–Klein–Gordon system in the presence of a negative cosmological constant, a model appearing frequently in the context of high-energy physics. Due to the lack of global hyperbolicity of the solutions, the natural formulation of dynamics is that of an initial boundary value problem, with boundary conditions imposed at null infinity. We prove a local well-posedness statement for this system, with the time of existence of the solutions depending only on an invariant H 2-type norm measuring the size of the Klein–Gordon field on the initial data. The proof requires the introduction of a renormalized system of equations and relies crucially on r-weighted estimates for the wave equation on asymptotically AdS spacetimes. The results provide the basis for our companion paper establishing the global asymptotic stability of Schwarzschild-Anti-de-Sitter within this system.

References

  1. 1

    Bachelot A.: The Dirac system on the Anti-de Sitter universe. Commun. Math. Phys. 283, 127–167 (2008)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  2. 2

    Bachelot, A.: The Klein–Gordon equation in Anti-de Sitter cosmology. arXiv:1010.1925

  3. 3

    Breitenlohner P., Freedman D.Z.: Stability in gauged extended supergravity. Ann. Phys. 144, 249 (1982)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  4. 4

    Choquet-Bruhat Y., Geroch R.P.: Global aspects of the Cauchy problem in general relativity. Commun. Math. Phys. 14, 329–335 (1969)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  5. 5

    Christodoulou D.: The problem of a self-gravitating scalar field. Commun. Math. Phys. 105, 337–361 (1986)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  6. 6

    Christodoulou D.: A mathematical theory of gravitational collapse. Commun. Math. Phys. 109, 613–647 (1987)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  7. 7

    Christodoulou D.: The instability of naked singularities in the gravitational collapse of a scalar field. Ann. Math 149, 183–217 (1999)

    MathSciNet  MATH  Article  Google Scholar 

  8. 8

    Dafermos M.: Spherically symmetric spacetimes with a trapped surface. Class. Quant. Grav. 22, 2221–2232 (2005) gr-qc/0403032

    MathSciNet  ADS  MATH  Article  Google Scholar 

  9. 9

    Dafermos M., Rodnianski I.: A proof of Price’s law for the collapse of a self-gravitating scalar field. Invent. Math. 162, 381–457 (2005) gr-qc/0309115

    MathSciNet  ADS  MATH  Article  Google Scholar 

  10. 10

    Friedrich H.: Einstein equations and conformal structure: existence of anti-de Sitter-type space-times. J. Geom. Phys. 17, 125–184 (1995)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  11. 11

    Friedrich H.: Initial boundary value problems for Einstein’s field equations and geometric uniqueness. Gen. Relat. Gravit. 41, 1947–1966 (2009)

    MathSciNet  ADS  MATH  Article  Google Scholar 

  12. 12

    Gubser S.S. Breaking an Abelian gauge symmetry near a black hole horizon. Phys. Rev. D 78 (2008). arXiv:065034, 0801.2977

  13. 13

    Holzegel G.: On the massive wave equation on slowly rotating Kerr-AdS spacetimes. Commun. Math. Phys. 294, 169–197 (2010) arXiv:0902.0973

    MathSciNet  MATH  Article  Google Scholar 

  14. 14

    Holzegel, G.: Well-posedness for the massive wave equation on asymptotically anti-de-Sitter spacetimes. arXiv:1103.0710

  15. 15

    Holzegel, G., Smulevici, J.: Stability of Schwarzschild-AdS for the spherically symmetric Einstein-Klein Gordon system. arXiv:1103.3672

  16. 16

    Kommemi, J.: The global structure of spherically symmetric charged scalar field spacetimes. Preprint. arXiv:1107.0949 (2011)

  17. 17

    Sonner J.: A rotating holographic superconductor. Phys. Rev. D 80, 084031 (2009) arXiv:0903.0627

    ADS  Article  Google Scholar 

  18. 18

    Vasy, A.: The wave equation on asymptotically Anti-de Sitter spaces. Anal. PDE (2009, to appear). arXiv:0911.5440

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jacques Smulevici.

Additional information

Communicated by Piotr T. Chrusciel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Holzegel, G., Smulevici, J. Self-Gravitating Klein–Gordon Fields in Asymptotically Anti-de-Sitter Spacetimes. Ann. Henri Poincaré 13, 991–1038 (2012). https://doi.org/10.1007/s00023-011-0146-8

Download citation

Keywords

  • Pointwise Estimate
  • Extension Principle
  • Raychaudhuri Equation
  • Penrose Diagram
  • Pointwise Bound