Skip to main content
Log in

Numerical Investigations of Non-uniqueness for the Navier–Stokes Initial Value Problem in Borderline Spaces

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We consider the Cauchy problem for the incompressible Navier–Stokes equations in \(\mathbb {R}^{3}\) for a one-parameter family of explicit scale-invariant axi-symmetric initial data, which is smooth away from the origin and invariant under the reflection with respect to the xy-plane. Working in the class of axi-symmetric fields, we calculate numerically scale-invariant solutions of the Cauchy problem in terms of their profile functions, which are smooth. The solutions are necessarily unique for small data, but for large data we observe a breaking of the reflection symmetry of the initial data through a pitchfork-type bifurcation. By a variation of previous results by Jia and Šverák (Invent Math 196(1):233–265, 2013, https://doi.org/10.1007/s00222-013-0468-x) it is known rigorously that if the behavior seen here numerically can be proved, optimal non-uniqueness examples for the Cauchy problem can be established, and two different solutions can exists for the same initial datum which is divergence-free, smooth away from the origin, compactly supported, and locally \((-1)\)-homogeneous near the origin. In particular, assuming our (finite-dimensional) numerics represents faithfully the behavior of the full (infinite-dimensional) system, the problem of uniqueness of the Leray–Hopf solutions (with non-smooth initial data) has a negative answer and, in addition, the perturbative arguments such those by Kato (Math Z 187(4):471–480, 1984, https://doi.org/10.1007/BF01174182) and Koch and Tataru (Adv Math 157(1):22–35, 2001, https://doi.org/10.1006/aima.2000.1937), or the weak-strong uniqueness results by Leray, Prodi, Serrin, Ladyzhenskaya and others, already give essentially optimal results. There are no singularities involved in the numerics, as we work only with smooth profile functions. It is conceivable that our calculations could be upgraded to a computer-assisted proof, although this would involve a substantial amount of additional work and calculations, including a much more detailed analysis of the asymptotic expansions of the solutions at large distances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Albritton, D., Brué, E., Colombo, M.: Nonuniqueness of weak solutions to the Navier–Stokes equation. Ann. Math. 196(1), 415–455 (2022). https://doi.org/10.4007/annals.2022.196.1.3

    Article  MathSciNet  MATH  Google Scholar 

  2. Alnæs, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M.E., Wells, G.N.: The FEniCS project version 1.5. Arch. Numer. Softw. 3(100), 9–23 (2015). https://doi.org/10.11588/ans.2015.100.20553

    Article  Google Scholar 

  3. Amestoy, P., Duff, I., L’Excellent, J.-Y.: Multifrontal parallel distributed symmetric and unsymmetric solvers. Comput. Methods Appl. Mech. Eng. 184(2–4), 501–520 (2000). https://doi.org/10.1016/s0045-7825(99)00242-x

    Article  MATH  ADS  Google Scholar 

  4. Anselone, P.M., Rall, L.B.: The solution of characteristic value-vector problems by Newton’s method. Numer. Math. 11(1), 38–45 (1968). https://doi.org/10.1007/bf02165469

  5. Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Rupp, K., Smith, B.F., Zampini, S., Zhang, H., Zhang, H.: PETSc users manual. Technical Reports ANL-95/11—Revision 3.7. Argonne National Laboratory (2016)

  6. Bradshaw, Z., Tsai, T.-P.: Forward discretely self-similar solutions of the Navier–Stokes equations II. Ann. Henri Poincaré 18(3), 1095–1119 (2017). https://doi.org/10.1007/s00023-016-0519-0

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Buckmaster, T., Vicol, V.: Nonuniqueness of weak solutions to the Navier–Stokes equation. Ann. Math. 189(1), 101–144 (2019). https://doi.org/10.4007/annals.2019.189.1.3

    Article  MathSciNet  MATH  Google Scholar 

  8. Escauriaza, L., Seregin, G., Šverák, V.: \(L_{3,\infty }\)-solutions of the Navier–Stokes equations and backward uniqueness. Russ. Math. Surv. 58(2), 211–250 (2003). https://doi.org/10.1070/rm2003v058n02abeh000609

    Article  MATH  Google Scholar 

  9. Fujita, H., Kato, T.: On the nonstationary Navier–Stokes system. Rendiconti del Seminario Matematico della Università di Padova 32, 243–260 (1962)

    MathSciNet  MATH  Google Scholar 

  10. Fujita, H., Kato, T.: On the Navier–Stokes initial value problem. I. Arch. Ration. Mech. Anal. 16(4), 269–315 (1964). https://doi.org/10.1007/bf00276188

    Article  MathSciNet  MATH  Google Scholar 

  11. Gallay, T., Wayne, C.E.: Invariant manifolds and the long-time asymptotics of the Navier–Stokes and vorticity equations on \({R}^2\). Arch. Ration. Mech. Anal. 163(3), 209–258 (2002). https://doi.org/10.1007/s002050200200

    Article  MathSciNet  MATH  Google Scholar 

  12. Germain, P., Ghoul, T.-E., Miura, H.: On uniqueness for the harmonic map heat flow in supercritical dimensions. Commun. Pure Appl. Math. 70(12), 2247–2299 (2017). https://doi.org/10.1002/cpa.21716

    Article  MathSciNet  MATH  Google Scholar 

  13. Hernandez, V., Roman, J.E., Tomas, A., Vidal, V.: Krylov–Schur methods in SLEPc. Technical Reports STR-7, Universitat Politècnica de València. http://slepc.upv.es (2009)

  14. Hernandez, V., Roman, J.E., Vidal, V.: SLEPc. ACM Trans. Math. Softw. 31(3), 351–362 (2005). https://doi.org/10.1145/1089014.1089019

    Article  MATH  Google Scholar 

  15. Hopf, E.: Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4(1–6), 213–231 (1950). https://doi.org/10.1002/mana.3210040121

    Article  MATH  Google Scholar 

  16. Jia, H., Šverák, V.: Local-in-space estimates near initial time for weak solutions of the Navier–Stokes equations and forward self-similar solutions. Invent. Math. 196(1), 233–265 (2013). https://doi.org/10.1007/s00222-013-0468-x

    Article  MathSciNet  MATH  ADS  Google Scholar 

  17. Jia, H., Šverák, V.: Minimal \(L^3\)-initial data for potential Navier–Stokes singularities. SIAM J. Math. Anal. 45(3), 1448–1459 (2013). https://doi.org/10.1137/120880197

    Article  MathSciNet  MATH  Google Scholar 

  18. Jia, H., Šverák, V.: Are the incompressible 3d Navier–Stokes equations locally ill-posed in the natural energy space? J. Funct. Anal. 268(12), 3734–3766 (2015). https://doi.org/10.1016/j.jfa.2015.04.006

    Article  MathSciNet  MATH  Google Scholar 

  19. Kato, T.: Strong \(L^p\)-solutions of the Navier–Stokes equation in \(\mathbb{R}^m\), with applications to weak solutions. Math. Z. 187(4), 471–480 (1984). https://doi.org/10.1007/BF01174182

    Article  MathSciNet  MATH  Google Scholar 

  20. Kielhöfer, H.: Bifurcation Theory: An Introduction with Applications to Partial Differential Equations, vol. 156. Springer, New York (2012). https://doi.org/10.1007/978-1-4614-0502-3

    Book  MATH  Google Scholar 

  21. Kiselev, A.A., Ladyzhenskaya, O.A.: On the existence and uniqueness of the solution of the nonstationary problem for a viscous, incompressible fluid. Izv. Akad. Nauk SSSR Ser. Mat. 21, 655–680 (1957)

    MathSciNet  Google Scholar 

  22. Koch, H., Tataru, D.: Well-posedness for the Navier–Stokes equations. Adv. Math. 157(1), 22–35 (2001). https://doi.org/10.1006/aima.2000.1937

    Article  MathSciNet  MATH  Google Scholar 

  23. Ladyzhenskaya, O.A.: On uniqueness and smoothness of generalized solutions to the Navier–Stokes equations. Zapiski Nauchnykh Seminarov POMI 5, 169–185 (1967)

    MathSciNet  MATH  Google Scholar 

  24. Lemarié-Rieusset, P.G.: Recent developments in the Navier–Stokes problem. In: CRC Research Notes in Mathematics Series. CRC Press (2002). https://doi.org/10.1201/9781420035674

  25. Lemarié-Rieusset, P.G.: The Navier–Stokes Problem in the 21st Century. CRC Press (2016). https://doi.org/10.1201/b19556

  26. Leray, J.: Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934). https://doi.org/10.1007/BF02547354

    Article  MathSciNet  MATH  Google Scholar 

  27. Logg, A., Mardal, K.-A., Wells, G.N., et al.: Automated Solution of Differential Equations by the Finite Element Method. Springer (2012). https://doi.org/10.1007/978-3-642-23099-8

  28. Oseen, C.W.: Sur les formules de Green généralisées qui se présentent dans l’hydrodynamique et sur quelques-unes de leurs applications. Acta Math. 34(1), 205–284 (1911). https://doi.org/10.1007/BF02393128

    Article  MathSciNet  MATH  Google Scholar 

  29. Prodi, G.: Un teorema di unicità per le equazioni di Navier–Stokes. Ann. Mat. 48(1), 173–182 (1959). https://doi.org/10.1007/bf02410664

    Article  MathSciNet  MATH  Google Scholar 

  30. Rall, L.B.: Newton’s method for the characteristic value problem \(Ax = \lambda Bx\). J. Soc. Ind. Appl. Math. 9(2), 288–293 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  31. Serrin, J.: The initial value problem for the Navier–Stokes equations. In: Langer, R.E. (ed.) Nonlinear Problems, pp. 69–98. The University of Wisconsin Press, Madison (1963)

    Google Scholar 

  32. Tao, T.: Finite time blowup for an averaged three-dimensional Navier–Stokes equation. J. Am. Math. Soc. 29(3), 601–674 (2016). https://doi.org/10.1090/jams/838

    Article  MathSciNet  MATH  Google Scholar 

  33. Topping, P.: Reverse bubbling and non-uniqueness in the harmonic map flow. Int. Math. Res. Not. 10, 505–520 (2002). https://doi.org/10.1155/S1073792802105083

    Article  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank J. Gómez-Serrano, H. Jia, and V. Vicol for valuable discussions and comments. Parts of this work were done while J. Guillod was at the School of Mathematics of the University of Minnesota, the Mathematics Department of Princeton University, and the ICERM at Brown University. The hospitality and facilities of these institutions are gratefully acknowledged. The research of J. Guillod was supported by the Swiss National Science Foundation grants 161996 and 171500. The research of V. Šverák was partially supported by the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julien Guillod.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest.

Additional information

Communicated by G. Seregin

In memory of Olga Alexandovna Ladyzhenskaya’s centennial.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical collection Ladyzhenskaya Centennial Anniversary edited by Gregory Seregin, Konstantinas Pileckas and Lev Kapitanski

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guillod, J., Šverák, V. Numerical Investigations of Non-uniqueness for the Navier–Stokes Initial Value Problem in Borderline Spaces. J. Math. Fluid Mech. 25, 46 (2023). https://doi.org/10.1007/s00021-023-00789-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-023-00789-5

Keywords

Mathematics Subject Classification

Navigation