Skip to main content
Log in

Global Regularity of the Three-Dimensional Fractional Micropolar Equations

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

The global well-posedness of the smooth solution to the three-dimensional (3D) incompressible micropolar equations is a difficult open problem. This paper focuses on the 3D incompressible micropolar equations with fractional dissipations \((-\Delta )^{\alpha }u\) and \((-\Delta )^{\beta }w\). Our objective is to establish the global regularity of the fractional micropolar equations with the minimal amount of dissipations. We prove that, if \(\alpha \ge \frac{5}{4}\), \(\beta \ge 0\) and \(\alpha +\beta \ge \frac{7}{4}\), the fractional 3D micropolar equations always possess a unique global classical solution for any sufficiently smooth data. In addition, we also obtain the global regularity of the 3D micropolar equations with the dissipations given by Fourier multipliers that are logarithmically weaker than the fractional Laplacian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Applebaum, D.: Lévy Processes and Stochastic Calculus, vol. 116, p. xxx+460. Cambridge University Press, Cambridge (2009)

    MATH  Google Scholar 

  2. Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations. Grundlehren der Mathematischen Wissenschaften, vol. 343. Springer, Heidelberg (2011)

    MATH  Google Scholar 

  3. Boardman, N., Ji, R., Qiu, H., Wu, J.: Global existence and uniqueness of weak solutions to the Boussinesq equations without thermal diffusion. Commun. Math. Sci. 17(6), 1595–1624 (2019)

    MathSciNet  MATH  Google Scholar 

  4. Barbato, D., Morandin, F., Romito, M.: Global regularity for a slightly supercritical hyperdissipative Navier–Stokes system. Anal. PDE 7(8), 2009–2027 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Bertoin, J.: Lévy Processes, Cambridge Tracts in Mathematics, vol. 121. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  6. Boldrini, J., Durán, M., Rojas-Medar, M.: Existence and uniqueness of strong solution for the incompressible micropolar fluid equations in domains of \({\mathbb{R}}^{3}\). Ann. Univ. Ferrara Sez. VII Sci. Mat. 56, 37–51 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Bucur, C., Valdinoci, E.: Nonlocal Diffusion and Applications. Lecture Notes of the Unione Matematica Italiana, vol. 20. Springer, ISBN 978-3-319-28738-6, xii, 155 pp (2016)

  8. Chen, Q., Miao, C.: Global well-posedness for the micropolar fluid system in critical Besov spaces. J. Differ. Equ. 252, 2698–2724 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Clavin, P.: Instabilities and nonlinear patterns of overdriven detonations in gases. In: Berestycki, H., Pomeau, Y. (eds.) Nonlinear PDEs in Condensed Matter and Reactive Flows, pp. 49–97. Kluwer, Dordrecht (2002)

    MATH  Google Scholar 

  10. Constantin, P., Foias, C.: Navier–Stokes Equations. Chicago Lectures in Mathematics. University of Chicago Press, Chicago (1989)

    Google Scholar 

  11. Cont, R., Tankov, P.: Financial Modeling with Jump Processes. Chapman Hall/CRC Financial Mathematics Series, Boca Raton (2004)

    MATH  Google Scholar 

  12. Constantin, P.: Energy spectrum of quasigeostrophic turbulence. Phys. Rev. Lett. 89, 184501 (2002)

    ADS  Google Scholar 

  13. Cowin, S.C.: Polar fluids. Phys. Fluids 11, 1919–1927 (1968)

    ADS  MATH  Google Scholar 

  14. Dai, Y., Hu, W., Wu, J., Xiao, B.: The Littlewood–Paley decomposition for periodic functions and applications to the Boussinesq equations. Anal. Appl. (2020). https://doi.org/10.1142/S0219530519500234

    Article  MathSciNet  Google Scholar 

  15. Dong, B., Li, J., Wu, J.: Global well-posedness and large-time decay for the 2D micropolar equations. J. Differ. Equ. 262, 3488–3523 (2017)

    MathSciNet  MATH  Google Scholar 

  16. Dong, B., Wu, J., Xu, X., Ye, Z.: Global regularity for the 2D micropolar equations with fractional dissipation. Discrete Contin. Dyn. Syst. 38(8), 4133–4162 (2018)

    MathSciNet  MATH  Google Scholar 

  17. Dong, B., Zhang, Z.: Global regularity of the 2D micropolar fluid flows with zero angular viscosity. J. Differ. Equ. 249, 200–213 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Erdogan, M.E.: Polar effects in the apparent viscosity of suspension. Rheol. Acta 9, 434–438 (1970)

    Google Scholar 

  19. Eringen, A.: Theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1966)

    MathSciNet  Google Scholar 

  20. Eringen, A.C.: Micropolar fluids with stretch. Int. J. Eng. Eci. 7, 115–127 (1969)

    MATH  Google Scholar 

  21. Frisch, U., Kurien, S., Pandit, R., Pauls, W., Ray, S., Wirth, A., Zhu, J.: Hyperviscosity, galerkin truncation, and bottlenecks in turbulence. Phys. Rev. Lett. 101, 264502 (2008)

    Google Scholar 

  22. Galdi, G., Rionero, S.: A note on the existence and uniqueness of solutions of the micropolar fluid equations. Int. J. Eng. Sci. 15, 105–108 (1977)

    MathSciNet  MATH  Google Scholar 

  23. Gill, A.E.: Atmosphere-Ocean Dynamics. Academic Press, London (1982)

    Google Scholar 

  24. Jiu, Q., Liu, J., Wu, J., Yu, H.: On the initial-and boundary-value problem for 2D micropolar equations with only angular velocity dissipation. Z. Angew. Math. Phys. 68, 68–107 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Jiu, Q., Yu, H.: Global well-posedness for 3D generalized Navier–Stokes–Boussinesq equations. Acta Math. Appl. Sin. Engl. Ser. 32, 1–16 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier–Stokes equations. Commun. Pure Appl. Math. 41, 891–907 (1988)

    MathSciNet  MATH  Google Scholar 

  27. Katz, N., Pavlović, N.: A cheap Caffarelli–Kohn–Nirenberg inequality for the Navier–Stokes equation with hyper-dissipation. Geom. Funct. Anal. 12, 355–379 (2002)

    MathSciNet  MATH  Google Scholar 

  28. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–305 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Lions, J.L.: Quelques méthodes de résolution de problèmes aux limites non linéaires. Dunod, Gauthier-Villars, Paris (1969)

    MATH  Google Scholar 

  30. Liu, J., Wang, S.: Initial-boundary value problem for 2D micropolar equations without angular viscosity. Commun. Math. Sci. 16, 2147–2165 (2018)

    MathSciNet  MATH  Google Scholar 

  31. Lukaszewicz, G.: On nonstationary flows of asymmetric fluids. Rend. Accad. Naz. Sci. XL Mem. Mat. (5) 12, 83–97 (1988)

    MathSciNet  MATH  Google Scholar 

  32. Lukaszewicz, G.: On the existence, uniqueness and asymptotic properties for solutions of flows of asymmetric fluids. Rend. Accad. Naz. Sci. XL Mem. Mat. (5) 13, 105–120 (1989)

    MathSciNet  MATH  Google Scholar 

  33. Lukaszewicz, G.: Micropolar Fluids. Theory and Applications, Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston (1999)

    MATH  Google Scholar 

  34. Majda, A., Bertozzi, A.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  35. Metzler, R., Klafter, J.: The random walks guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  36. Nowakowski, B.: Large time existence of strong solutions to micropolar equations in cylindrical domains. Nonlinear Anal. RWA 14, 635–660 (2013)

    MathSciNet  MATH  Google Scholar 

  37. Pablo, A., Quiros, F., Rodriguez, A., Vazquez, J.L.: A fractional porous medium equation. Adv. Math. 226, 1378–1409 (2011)

    MathSciNet  MATH  Google Scholar 

  38. Pozrikidis, C.: The Fractional Laplacian. CRC Press, London (2016)

    MATH  Google Scholar 

  39. Rojas-Medar, M., Ortega-Torres, E.: The equations of a viscous asymmetric fluid: an interactive approach. Z. Angew. Math. Mech. 85, 471–489 (2005)

    MathSciNet  MATH  Google Scholar 

  40. Tao, T.: Global regularity for a logarithmically supercritical hyperdissipative Navier–Stokes equation. Anal. PDE 2(3), 361–366 (2009)

    MathSciNet  MATH  Google Scholar 

  41. Tran, C., Yu, X., Zhai, Z.: Note on solution regularity of the generalized magnetohydrodynamic equations with partial dissipation. Nonlinear Anal. 85, 43–51 (2013)

    MathSciNet  MATH  Google Scholar 

  42. Woyczyński, W.: Lévy Processes in the Physical Sciences, Lévy Processes, pp. 241–266. Birkhäuser, Boston (2001)

    MATH  Google Scholar 

  43. Wu, J.: Generalized MHD equations. J. Differ. Equ. 195, 284–312 (2003)

    ADS  MathSciNet  MATH  Google Scholar 

  44. Wu, J.: Global regularity for a class of generalized magnetohydrodynamic equations. J. Math. Fluid Mech. 13, 295–305 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  45. Xiang, Z., Yan, W.: Global regularity of solutions to the Boussinesq equations with fractional diffusion. Adv. Differ. Equ. 18, 1105–1128 (2013)

    MathSciNet  MATH  Google Scholar 

  46. Xue, L.: Well posedness and zero microrotation viscosity limit of the 2D micropolar fluid equations. Math. Methods Appl. Sci. 34, 1760–1777 (2011)

    MathSciNet  MATH  Google Scholar 

  47. Yamaguchi, N.: Existence of global strong solution to the micropolar fluid systemin a bounded domain. Math. Methods Appl. Sci. 28, 1507–1526 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  48. Yamazaki, K.: Global regularity of logarithmically supercritical MHD system with zero diffusivity. Appl. Math. Lett. 29, 46–51 (2014)

    MathSciNet  MATH  Google Scholar 

  49. Yamazaki, K.: On the global regularity of N-dimensional generalized Boussinesq system. Appl. Math. 60, 109–133 (2015)

    MathSciNet  MATH  Google Scholar 

  50. Yamazaki, K.: Global regularity of logarithmically supercritical MHD system with improved logarithmic powers. Dyn. Partial Differ. Equ. 15, 147–173 (2018)

    MathSciNet  MATH  Google Scholar 

  51. Yang, W., Jiu, Q., Wu, J.: The 3D incompressible Navier–Stokes equations with partial hyperdissipation. Math. Nachr. 292(8), 1823–1836 (2019)

    MathSciNet  MATH  Google Scholar 

  52. Ye, Z.: A note on global well-posedness of solutions to Boussinesq equations with fractional dissipation. Acta Math. Sci. Ser. B Engl. Ed. 35(1), 112–120 (2015)

    MathSciNet  MATH  Google Scholar 

  53. Ye, Z.: On regularity criteria of the 2D generalized MHD equations. J. Math. Anal. Appl. 463, 989–1005 (2018)

    MathSciNet  MATH  Google Scholar 

  54. Ye, Z.: Some new regularity criteria for the 2D Euler–Boussinesq equations via the temperature. Acta Appl. Math. 157, 141–169 (2018)

    MathSciNet  MATH  Google Scholar 

  55. Ye, Z.: Global regularity of the regularized Boussinesq equations with zero diffusion. Submitted for publication (2017)

  56. Dong, B., Wu, J., Ye, Z.: Global regularity for a 2D tropical climate model with fractional dissipation. J. Nonlinear Sci. 29(2), 511–550 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for profitable suggestions and valuable comments. The research of D. Wang is partially supported by the National Science Foundation under Grants DMS-1613213 and DMS-1907519. The research of J. Wu is partially supported by the National Science Foundation under Grant DMS 1624146 and the AT&T Foundation at Oklahoma State University. Z. Ye is supported by the National Natural Science Foundation of China (No. 11701232), the Natural Science Foundation of Jiangsu Province (No. BK20170224) and the Qing Lan Project of Jiangsu Province. Part of this work was done when Ye visited the Department of Mathematics, University of Pittsburgh; and he appreciates the hospitality of Prof. Dehua Wang and Prof. Ming Chen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuan Ye.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by G. Seregin

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Besov Spaces

This appendix provides the definition of the Besov spaces and related facts that have been used in the previous sections. Some of the materials are taken from [2].

We start with the partition of unity. Let B(0, r) and \({{\mathcal {C}}}(0, r_1, r_2)\) denote the standard ball and the annulus, respectively,

$$\begin{aligned} B(0, r) = \left\{ \xi \in {\mathbb {R}}^n: \, |\xi | \le r \right\} , \quad {\mathcal {C}} (0, r_1, r_2) = \left\{ \xi \in {\mathbb {R}}^n:\, r_1 \le |\xi |\le r_2 \right\} . \end{aligned}$$

There are two compactly supported smooth radial functions \(\phi \) and \(\psi \) satisfying

$$\begin{aligned}&\text{ supp } \,\phi \subset B(0, 4/3), \quad \text{ supp } \,\psi \subset {\mathcal {C}}(0, 3/4, 8/3), \nonumber \\&\phi (\xi ) + \sum _{j\ge 0} \psi (2^{-j} \xi ) = 1 \quad \text{ for } \text{ all }\,\, \xi \in {\mathbb {R}}^n. \end{aligned}$$
(A.1)

We use \({{\widetilde{h}}}\) and h to denote the inverse Fourier transforms of \(\phi \) and \(\psi \) respectively,

$$\begin{aligned} {{\widetilde{h}}} = {\mathcal {F}}^{-1} \phi , \quad h = {\mathcal {F}}^{-1} \psi . \end{aligned}$$

In addition, for notational convenience, we write \(\psi _j(\xi ) = \psi (2^{-j} \xi )\). By a simple property of the Fourier transform,

$$\begin{aligned} h_j(x) :={\mathcal {F}}^{-1} (\psi _j)(x) = 2^{n j} \, h(2^j x). \end{aligned}$$

The inhomogeneous dyadic block operator \(\Delta _j\) are defined as follows

$$\begin{aligned}&\Delta _j f=0 \quad \text{ for } j\le -2,\\&\Delta _{-1} f = {{\widetilde{h}}} *f = \int _{{\mathbb {R}}^n} f(x-y) \, {{\widetilde{h}}}(y)\,dy,\\&\Delta _j f = h_j *f = 2^{n j} \int _{{\mathbb {R}}^n} f(x-y) \, h(2^j y)\,dy \quad \text{ for } j\ge 0. \end{aligned}$$

The corresponding inhomogeneous low frequency cut-off operator \(S_j\) is defined by

$$\begin{aligned} S_j f = \sum _{k\le j-1} \Delta _k f. \end{aligned}$$

For any function f in the usual Schwarz class \({\mathcal {S}}\), (A.1) implies

$$\begin{aligned} {{\widehat{f}}} (\xi ) = \phi (\xi )\, {{\widehat{f}}} (\xi ) + \sum _{j\ge 0} \psi (2^{-j} \xi )\,{{\widehat{f}}} (\xi ) \end{aligned}$$
(A.2)

or, in terms of the inhomogeneous dyadic block operators,

$$\begin{aligned} f= \sum _{j\ge -1} \Delta _j f \quad \text{ or }\quad \text{ Id } = \sum _{j\ge -1} \Delta _j, \end{aligned}$$

where Id denotes the identity operator. More generally, for any F in the space of tempered distributions, denoted \({{\mathcal {S}}}'\), (A.2) still holds but in the distributional sense. That is, for \(F \in {{\mathcal {S}}}'\),

$$\begin{aligned} F = \sum _{j\ge -1} \Delta _j F \quad \text{ or }\quad \text{ Id } = \sum _{j\ge -1} \Delta _j \quad \text{ in } \quad {{\mathcal {S}}}'. \end{aligned}$$
(A.3)

In fact, one can verify that

$$\begin{aligned} S_j F := \sum _{k\le j-1} \Delta _k F \quad \rightarrow \quad F \quad \text{ in } \quad {{\mathcal {S}}}'. \end{aligned}$$

(A.3) is referred to as the Littlewood-Paley decomposition for tempered distributions.

The inhomogeneous Besov space can be defined in terms of \(\Delta _j\) specified above.

Definition A.1

For \(1\le p,q \le \infty \) and \(s\in {{\mathbb {R}}}\), the inhomogeneous Besov space \(B^s_{p,q}\) consists of the functions \(f\in {\mathcal S}'\) satisfying \( \Vert f\Vert _{B^s_{p,q}} \equiv \Vert 2^{js} \Vert \Delta _j f\Vert _{L^p} \Vert _{l^q} <\infty . \)

Bernstein’s inequality is a useful tool on Fourier localized functions and these inequalities trade derivatives for integrability. The following proposition provides Bernstein type inequalities for fractional derivatives.

Lemma A.1

For \(\alpha \ge 0\), \(1\le p\le q\le \infty \), and \(f\in L^p({\mathbb {R}}^n)\),

  1. (1)

    if there exist some integer j and a constant \(K>0\), such that, \(\text{ supp }\, {\widehat{f}} \subset \{\xi \in {\mathbb {R}}^n: \,\, |\xi | \le K 2^j \}\), then

    $$\begin{aligned} \Vert (-\Delta )^\alpha f\Vert _{L^q({\mathbb {R}}^n)} \le C_1\, 2^{2\alpha j + j n(\frac{1}{p}-\frac{1}{q})} \Vert f\Vert _{L^p({\mathbb {R}}^n)}; \end{aligned}$$
  2. (2)

    if there exist some integer j and constants \(0<K_1\le K_2\), such that, \(\text{ supp }\, {\widehat{f}} \subset \{\xi \in {\mathbb {R}}^n: \,\, K_12^j\le |\xi | \le K_2 2^j \}\), then

    $$\begin{aligned} C_1\, 2^{2\alpha j} \Vert f\Vert _{L^q({\mathbb {R}}^n)} \le \Vert (-\Delta )^\alpha f\Vert _{L^q({\mathbb {R}}^n)} \le C_2\, 2^{2\alpha j + j n(\frac{1}{p}-\frac{1}{q})} \Vert f\Vert _{L^p({\mathbb {R}}^n)}, \end{aligned}$$

    where \(C_1\) and \(C_2\) are constants depending only on \(\alpha ,p\) and q.

Appendix B. A Global Regularity Result When \(\nabla \nabla \cdot w\) is Eliminated

As we mentioned in the introduction, the term \(\nabla \nabla \cdot w\) in the equation of w in the micropolar system is a “bad” term in the sense that it prevents us from deriving the estimate \(\Vert w\Vert _{L^{q}}\) with \(q>2\) directly by the standard \(L^{q}\)-estimate. This appendix provides a global regularity result for the micropolar system without this term, namely (1.2) with \(\mu =0\). As we shall see in Theorem B.1, the requirement on the fractional powers can be reduced to \(\alpha \ge \frac{5}{4}\) and \(\beta =0\), which is the best one at this moment.

Theorem B.1

Consider the following 3D incompressible micropolar equations, namely,

$$\begin{aligned} \left\{ \begin{array}{l} \partial _t u+(u\cdot \nabla ) u +(-\Delta )^{\alpha } u +\nabla p = \nabla \times w , \quad x\in {\mathbb {R}}^{3},\,t>0,\\ \partial _tw + (u\cdot \nabla ) w +2 w = \nabla \times u,\\ \nabla \cdot u=0,\\ u(x,0)=u_{0}(x),\quad w(x,0)=w_{0}(x). \end{array}\right. \end{aligned}$$
(B.1)

Let \((u_{0},\,w_{0})\in H^{s}({\mathbb {R}}^{3})\) with \(s>\frac{5}{2}\) and \(\nabla \cdot u_{0}=0\). If \(\alpha \ge \frac{5}{4}\), then the system (B.1) admits a unique global solution \((u,\,w)\) such that for any given \(T>0\),

$$\begin{aligned} (u,\,w)\in L^{\infty }([0, T]; H^{s}({\mathbb {R}}^{3})),\quad \Lambda ^{\alpha }u\in L^{2}([0, T]; H^{s}({\mathbb {R}}^{3})). \end{aligned}$$

It suffices to consider the endpoint case \(\alpha =\frac{5}{4}\) since \(\alpha >\frac{5}{4}\) is even simpler. Combining Lemma 2.1 and Lemma 2.2, we still have

$$\begin{aligned} \Vert u(t)\Vert _{H^{\frac{1}{4}}}^{2} +\int _{0}^{t}{\Vert u(\tau )\Vert _{H^{\frac{3}{2}}}^{2}\,d\tau }\le C(t,\,u_{0},\,w_{0}). \end{aligned}$$
(B.2)

With (B.2) at our disposal, we are in the position to establish the following key estimates.

Lemma B.1

Assume \((u_{0},w_{0})\) satisfies the assumptions stated in Theorem B.1, then the smooth solution (uw) of (B.1) admits the following bounds

$$\begin{aligned}&\int _{0}^{t}{ \Vert \nabla u(\tau )\Vert _{L^{\infty }}\,d\tau }\le C(t,\,u_{0},\,w_{0}), \end{aligned}$$
(B.3)
$$\begin{aligned}&\Vert w(t)\Vert _{L^{\infty }} \le C(t,\,u_{0},\,w_{0}). \end{aligned}$$
(B.4)

Proof

By \(\nabla \cdot u=0\), we rewrite (B.1)\({}_{1}\) as follows

$$\begin{aligned} \partial _{t}u+\Lambda ^{\frac{5}{2}} u=-\left( {\mathbb {I}}_{3}+(-\Delta )^{-1}\nabla \nabla \cdot \right) \Big [\nabla \cdot (u\otimes u)-\nabla \times w\Big ], \end{aligned}$$

where we have eliminated the pressure term by \(\nabla \cdot u=0\). Applying \(\Lambda ^{-1}\) yields

$$\begin{aligned} \partial _{t}\Lambda ^{-1}u+\Lambda ^{\frac{5}{2}} \Lambda ^{-1} u=-\Lambda ^{-1}\left( {\mathbb {I}}_{3}+(-\Delta )^{-1}\nabla \nabla \cdot \right) \Big [\nabla \cdot (u\otimes u)-\nabla \times w\Big ]. \end{aligned}$$
(B.5)

Applying Lemma 3.1 of [53] to (B.5) leads to

$$\begin{aligned} \Vert \Lambda ^{\frac{3}{2}-\epsilon }u\Vert _{L_{t}^{1}L^{8}}&= \Vert \Lambda ^{\frac{5}{2}-\epsilon }\Lambda ^{-1}u\Vert _{L_{t}^{1}L^{8}}\nonumber \\&\le C(t,u_{0})+ C(t)\left\| \Lambda ^{-1}\left( {\mathbb {I}}+(-\Delta )^{-1}\nabla \nabla \cdot \right) \Big [\nabla \cdot (u\otimes u)-\nabla \times w\Big ]\right\| _{L_{t}^{1}L^{8}}\nonumber \\&\le C(t,u_{0}) + C(t)\left\| \Lambda ^{-1} \Big [\nabla \cdot (u\otimes u)-\nabla \times w\Big ]\right\| _{L_{t}^{1}L^{8}}\nonumber \\&\le C(t,u_{0}) + C(t)\Vert uu\Vert _{L_{t}^{1}L^{8}} + C(t)\Vert w\Vert _{L_{t}^{1}L^{8}}\nonumber \\&\le C(t,u_{0}) + C(t)\Vert u\Vert _{L_{t}^{2}L^{16}}^{2} + C(t)\Vert w\Vert _{L_{t}^{1}L^{8}} \nonumber \\&\le C(t,u_{0}) + C(t)\Vert u\Vert _{L_{t}^{2}H^{\frac{3}{2}}}^{2} + C(t)\Vert w\Vert _{L_{t}^{1}L^{8}} \nonumber \\&\le C(t,\,u_{0},\,w_{0}) + C(t)\Vert w\Vert _{L_{t}^{1}L^{8}}, \end{aligned}$$
(B.6)

where in the last line we have used (B.2). By the equation of w in (B.1),

$$\begin{aligned} \frac{d}{dt}\Vert w(t)\Vert _{L^{8}}\le \Vert \nabla u\Vert _{L^{8}}. \end{aligned}$$

By an interpolation inequality, one derives

$$\begin{aligned} \Vert w(t)\Vert _{L^{8}}&\le \Vert w_{0}\Vert _{L^{8}}+\int _{0}^{t}\Vert \nabla u(\tau )\Vert _{L^{8}}\,d\tau \\&\le \Vert w_{0}\Vert _{L^{8}}+C\int _{0}^{t}\Vert u(\tau )\Vert _{L^{2}}^{1-\frac{17}{21-8\epsilon }} \Vert \Lambda ^{\frac{3}{2}-\epsilon }u(\tau )\Vert _{L^{8}}^{\frac{17}{21-8\epsilon }}\,d\tau \\&\le \Vert w_{0}\Vert _{L^{8}} +C\left( \int _{0}^{t}\Vert u(\tau )\Vert _{L^{2}}\,d\tau \right) ^{1-\frac{17}{21-8\epsilon }} \left( \int _{0}^{t} \Vert \Lambda ^{\frac{3}{2}-\epsilon }u(\tau )\Vert _{L^{8}} \,d\tau \right) ^{\frac{17}{21-8\epsilon }}, \end{aligned}$$

where \(0<\epsilon <\frac{1}{2}\). Therefore, we conclude

$$\begin{aligned} \Vert w\Vert _{L_{t}^{1}L^{8}}&\le t\Vert w_{0}\Vert _{L^{8}} +Ct\left( \int _{0}^{t}\Vert u(\tau )\Vert _{L^{2}}\,d\tau \right) ^{1-\frac{17}{21-8\epsilon }} \left( \int _{0}^{t} \Vert \Lambda ^{\frac{3}{2}-\epsilon }u(\tau )\Vert _{L^{8}} \,d\tau \right) ^{\frac{17}{21-8\epsilon }} \nonumber \\&\le t\Vert w_{0}\Vert _{L^{8}}+C(t,\,u_{0},\,w_{0}) \Vert \Lambda ^{\frac{3}{2}-\epsilon }u\Vert _{L_{t}^{1}L^{8}}^{\frac{17}{21-8\epsilon }}. \end{aligned}$$
(B.7)

Combining (B.6) and (B.7), we have

$$\begin{aligned} \Vert \Lambda ^{\frac{3}{2}-\epsilon }u\Vert _{L_{t}^{1}L^{8}}&\le C(t,\,u_{0},\,w_{0})+C(t,\,u_{0},\,w_{0}) \Vert \Lambda ^{\frac{3}{2}-\epsilon }u\Vert _{L_{t}^{1}L^{8}}^{\frac{17}{21-8\epsilon }}\\&\le C(t,\,u_{0},\,w_{0})+\frac{1}{2}\Vert \Lambda ^{\frac{3}{2}-\epsilon }u\Vert _{L_{t}^{1}L^{8}}, \end{aligned}$$

which yields

$$\begin{aligned} \Vert \Lambda ^{\frac{3}{2}-\epsilon }u\Vert _{L_{t}^{1}L^{8}} \le C(t,\,u_{0},\,w_{0}). \end{aligned}$$
(B.8)

By further taking \(0<\epsilon <\frac{1}{8}\), we obtain from (B.8) that

$$\begin{aligned} \int _{0}^{t}\Vert \nabla u(\tau )\Vert _{L^{\infty }}\,d\tau&\le C\int _{0}^{t}\Vert u(\tau )\Vert _{L^{2}}\,d\tau +C\int _{0}^{t} \Vert \Lambda ^{\frac{3}{2}-\epsilon }u(\tau )\Vert _{L^{8}}\,d\tau \nonumber \\&\le C(t,\,u_{0},\,w_{0}). \end{aligned}$$
(B.9)

By the equation of w in (B.1), we again have, for any \(2\le q<\infty \),

$$\begin{aligned} \frac{d}{dt}\Vert w(t)\Vert _{L^{q}}\le \Vert \nabla u\Vert _{L^{q}} \quad \text{ or }\quad \Vert w(t)\Vert _{L^{q}} \le \Vert w_0\Vert _{L^{q}} + \int _0^t \Vert \nabla u\Vert _{L^{q}}\, d\tau . \end{aligned}$$

Letting \(q\rightarrow \infty \) and invoking (B.9), we find

$$\begin{aligned} \Vert w(t)\Vert _{L^{\infty }} \le C(t,\,u_{0},\,w_{0}). \end{aligned}$$

Thus, we complete the proof of Lemma B.1. \(\square \)

By (B.3) and (B.4), we can obtain our ultimate global \(H^s\)-estimate for u and w.

Proof of Theorem B.1

Similar to (3.16), we have

$$\begin{aligned}&\frac{d}{dt}(\Vert \Lambda ^{s} u\Vert _{L^{2}}^{2}+\Vert \Lambda ^{s} w\Vert _{L^{2}}^{2})+\Vert \Lambda ^{s+\frac{5}{4}} u\Vert _{L^{2}}^{2}\\&\quad \le C(1+\Vert w\Vert _{L^{\infty }}^{2}+\Vert \nabla u\Vert _{L^{\infty }}) (\Vert \Lambda ^{s}u\Vert _{L^{2}}^{2}+\Vert \Lambda ^{s}w\Vert _{L^{2}}^{2}), \end{aligned}$$

which along with the Gronwall inequality, (B.3) and (B.4) yield

$$\begin{aligned} \Vert \Lambda ^{s} u(t)\Vert _{L^{2}}^{2}+\Vert \Lambda ^{s} w(t)\Vert _{L^{2}}^{2}+\int _{0}^{t}{ \Vert \Lambda ^{s+\frac{5}{4}} u(\tau )\Vert _{L^{2}}^{2} \,d\tau }\le C(t,\,u_{0},\,w_{0}). \end{aligned}$$

This finish the proof of Theorem B.1. \(\square \)

Appendix C. Local Well-Posedness Result on (1.2)

For the sake of completeness, this appendix presents the local well-posedness result of (1.2) with initial data \((u_{0}, w_{0}) \in H^{s}({\mathbb {R}}^{3})\) with \(s>\frac{5}{2}\). More precisely, we prove the following local well-posedness result.

Proposition C.1

Let \((u_{0}, w_{0}) \in H^{s}({\mathbb {R}}^{3})\) with \(s>\frac{5}{2}\) and \(\nabla \cdot u_{0}=0\). If \(\alpha +\beta >1\), then there exists a positive time T depending on \(\Vert u_{0}\Vert _{H^{s}}\) and \(\Vert w_{0}\Vert _{H^{s}}\) such that (1.2) admits a unique solution \((u, w)\in C([0, T]; H^{s}({\mathbb {R}}^{3}))\).

We remark that the same local well-posedness result also holds true for (1.8). Similarly to [10, 34] (also see [56]), the main ingredient of the proof of the Proposition C.1 is to approximate (1.2) by the Friedrichs method to obtain a family of global smooth solutions.

For \(N>0\), set \(B(0,N)=\{\xi \in {\mathbb {R}}^{3}|\,|\xi |\le N\}\) and denote by \(\chi _{B(0,N)}\) the characteristic function on B(0, N). Define the functional space

$$\begin{aligned} L^{2}_{N}:=\{f\in L^{2}({\mathbb {R}}^{3})|\, \text{ supp } \,{\widehat{f}}\subset B(0,N)\}, \end{aligned}$$

and the spectral cut-off

$$\begin{aligned} \widehat{{\mathcal {J}}_{N}f}(\xi )=\chi _{B(0,N)}(\xi ){\widehat{f}}(\xi ). \end{aligned}$$

Proof of Proposition C.1

We first consider the following approximate system of (1.2),

$$\begin{aligned} \left\{ \begin{aligned}&\partial _{t}u^{N}+{\mathcal {P}}{\mathcal {J}}_{N}(({\mathcal {J}}_{N}u^{N}\cdot \nabla ) {\mathcal {J}}_{N}u^{N})+ \Lambda ^{2\alpha }{\mathcal {J}}_{N}u^{N} ={\mathcal {P}}\mathcal \nabla \times {J}_{N}w^{N}, \\&\partial _{t}w^{N}+{\mathcal {J}}_{N} (({\mathcal {J}}_{N}u^{N} \cdot \nabla ){\mathcal {J}}_{N}w^{N})+2{\mathcal {J}}_{N}w^{N}+\Lambda ^{2\beta }{\mathcal {J}}_{N}w^{N}=\nabla \times {J}_{N}u^{N}+ \nabla \nabla \cdot {J}_{N}w^{N},\\&\nabla \cdot u^{N}=0,\\&u^{N}(x, 0)={\mathcal {J}}_{N}u_{0}(x), \quad w^{N}(x,0)={\mathcal {J}}_{N}w_{0}(x) , \end{aligned}\right. \end{aligned}$$
(C.1)

where \({\mathcal {P}}\) denotes the standard projection onto divergence-free vector fields. Thanks to the Cauchy-Lipschitz theorem (Picard’s Theorem, see [34]), we can find that for any fixed N, there exists a unique local solution \((u^{N},w^{N})\) on \([0,\,T_{N})\) in the functional setting \(L^{2}_{N}\) with \(T_{N}=T(N, u_{0}, w_{0})\). By \({\mathcal {J}}_{N}^{2}={\mathcal {J}}_{N},\,{\mathcal {P}}^{2}={\mathcal {P}}\) and \({\mathcal {P}}{\mathcal {J}}_{N}={\mathcal {J}}_{N}{\mathcal {P}}\), we can check that \(({\mathcal {J}}_{N}u^{N},\,{\mathcal {J}}_{N}w^{N})\) is also a solution to (C.1) with the same initial datum. Based on the uniqueness, it yields

$$\begin{aligned} {\mathcal {J}}_{N}u^{N}=u^{N},\ \ \ {\mathcal {J}}_{N}w^{N}=w^{N}. \end{aligned}$$

Consequently, the approximate system (C.1) reduces to

$$\begin{aligned} \left\{ \begin{aligned}&\partial _{t}u^{N}+{\mathcal {P}}{\mathcal {J}}_{N}((u^{N}\cdot \nabla )u^{N})+ \Lambda ^{2\alpha } u^{N} ={\mathcal {P}}\mathcal \nabla \times w^{N}, \\&\partial _{t}w^{N}+{\mathcal {J}}_{N} ((u^{N} \cdot \nabla )w^{N})+2w^{N}+\Lambda ^{2\beta }w^{N}=\nabla \times u^{N}+ \nabla \nabla \cdot w^{N},\\&\nabla \cdot u^{N}=0,\\&u^{N}(x, 0)={\mathcal {J}}_{N}u_{0}(x), \quad w^{N}(x,0)={\mathcal {J}}_{N}w_{0}(x). \end{aligned}\right. \end{aligned}$$
(C.2)

A basic energy estimate implies \((u^{N},w^{N})\) of (C.2) satisfies

$$\begin{aligned}&\Vert u^{N}(t)\Vert _{L^{2}}^{2}+\Vert w^{N}(t)\Vert _{L^{2}}^{2}+ \int _{0}^{t}{ (\Vert \Lambda ^{\alpha } u^{N}\Vert _{L^{2}}^{2}+\Vert w^{N}\Vert _{H^{\beta }}^{2})(\tau )\,d\tau } \le C(\Vert u_{0}\Vert _{L^{2}}^{2}+\Vert w_{0}\Vert _{L^{2}}^{2},t). \end{aligned}$$

Therefore, the local solution can be extended into a global one, via the classical Picard Extension Theorem (see, e.g., [34]). By the direct \(H^s\)-estimates (see for example (3.16)), we deduce from (C.2) that

$$\begin{aligned}&\frac{d}{dt}(\Vert u^{N}(t)\Vert _{H^{s}}^{2} +\Vert w^{N}(t)\Vert _{H^{s}}^{2})+\Vert \Lambda ^{\alpha }u^{N}\Vert _{H^{s}}^{2} +\Vert \Lambda ^{\beta }w^{N}\Vert _{H^{s}}^{2}\nonumber \\&\quad \le C(1+\Vert \nabla u^{N}\Vert _{L^{\infty }}+\Vert \nabla w^{N}\Vert _{L^{\infty }}) (\Vert u^{N}\Vert _{H^{s}}^{2}+\Vert w^{N}\Vert _{H^{s}}^{2})\nonumber \\&\quad \le C(1+\Vert u^{N}\Vert _{H^{s}}+\Vert w^{N}\Vert _{H^{s}}) (\Vert u^{N}\Vert _{H^{s}}^{2}+\Vert w^{N}\Vert _{H^{s}}^{2}), \end{aligned}$$
(C.3)

where we use the fact that

$$\begin{aligned} \Vert \nabla f\Vert _{L^{\infty }({\mathbb {R}}^{3})}\le C\Vert f\Vert _{H^{s}({\mathbb {R}}^{3})},\quad s>\frac{5}{2}. \end{aligned}$$

We assume in (C.3) that \(\Vert u^{N}\Vert _{H^{s}}+\Vert w^{N}\Vert _{H^{s}}\ge 1\) since, otherwise, we replace \(\Vert u^{N}\Vert _{H^{s}}+\Vert w^{N}\Vert _{H^{s}}\) by \(1+\Vert u^{N}\Vert _{H^{s}}+\Vert w^{N}\Vert _{H^{s}}\). Denoting

$$\begin{aligned} X(t):={\Vert u^{N}(t)\Vert _{H^{s}}^{2}+\Vert w^{N}(t)\Vert _{H^{s}}^{2}}, \end{aligned}$$

we get from (C.3) that

$$\begin{aligned} \frac{d}{dt}X(t) \le \kappa X(t)^{\frac{3}{2}}, \end{aligned}$$

where \(\kappa >0\) is an absolute constant. By direct calculations, we show that for all N

$$\begin{aligned} \sup _{0\le t\le T}( {\Vert u^{N}(t)\Vert _{H^{s}}^{2}+\Vert w^{N}(t)\Vert _{H^{s}}^{2}}) \le \frac{ {4\Vert u_{0}\Vert _{H^{s}}^{2}+4\Vert w_{0}\Vert _{H^{s}}^{2}}}{\big (2-\kappa T \sqrt{{\Vert u_{0}\Vert _{H^{s}}^{2} +\Vert w_{0}\Vert _{H^{s}}^{2} }}\big )^{2}}, \end{aligned}$$

where \(T>0\) satisfies

$$\begin{aligned} T<\frac{2}{\kappa \sqrt{\Vert u_{0}\Vert _{{H}^{s}}^{2}+\Vert w_{0}\Vert _{H^{s}}^{2}}}. \end{aligned}$$

As a result, the family \((u^{N},w^{N})\) is uniformly bounded in \(C([0, T]; H^{s})\) with \(s>\frac{5}{2}\). We can also show that

$$\begin{aligned} \partial _{t}u^{N},\,\,\partial _{t}w^{N}\in L_{t}^{\infty } ([0, T]);\,H_{x}^{-\vartheta }({\mathbb {R}}^{3})\quad \text{ for } \text{ some } \,\, \vartheta \ge 2. \end{aligned}$$

As the embedding \(L^{2}\hookrightarrow H^{-\vartheta }\) is locally compact, the well-known Aubin-Lions argument allows us to conclude that a subsequence \((u^{N},w^{N})_{N\in {\mathbb {N}}}\) satisfies, on any compact subset of \({\mathbb {R}}^3\),

$$\begin{aligned} \Vert u^{N}-u^{N'}\Vert _{L^{2}}\rightarrow 0,\quad \Vert w^{N}-w^{N'}\Vert _{L^{2}}\rightarrow 0,\quad as\quad N,\,\,N'\rightarrow \infty . \end{aligned}$$

Noticing that \(\Vert f\Vert _{H^{s'}}\le C \Vert f\Vert _{L^{2}}^{1-\frac{s'}{s}}\Vert f\Vert _{H^{s}}^{\frac{s'}{s}}\) for \(s>s'\), we have

$$\begin{aligned} \Vert u^{N}-u^{N'}\Vert _{H^{s'}}\rightarrow 0,\quad \Vert w^{N}-w^{N'}\Vert _{H^{s'}} \rightarrow 0,\quad as\quad N,\,\,N'\rightarrow \infty , \end{aligned}$$

which imply that we have strong convergence limit \((u, w)\in C([0, T]; H^{s'}({\mathbb {R}}^{3}))\) for any \(s'<s\). Therefore, this is enough for us to show that up to extraction, sequence \((u^{N},w^{N})_{N\in {\mathbb {N}}}\) has a limit \((u,\,w)\) satisfying

$$\begin{aligned} \left\{ \begin{array}{l} \partial _t u+{\mathcal {P}}(u\cdot \nabla ) u +\Lambda ^{2\alpha } u = {\mathcal {P}}\nabla \times w,\\ \partial _tw + (u\cdot \nabla ) w +2 w+\Lambda ^{2\beta }w = \nabla \times u+ \nabla \nabla \cdot w,\\ \nabla \cdot u=0,\\ u(x,0)=u_{0}(x),\quad w(x,0)=w_{0}(x). \end{array}\right. \end{aligned}$$
(C.4)

Furthermore, it is not hard to check that \((u, w)\in L^{\infty }([0, T]; H^{s}({\mathbb {R}}^{3}))\). Finally, we claim that \((u, w)\in C([0, T]; H^{s}({\mathbb {R}}^{3}))\). It suffices to consider \(u\in C([0, T]; H^{s}({\mathbb {R}}^{3})\) as the same fashion can be applied to w to obtain the desired result. First, one has

$$\begin{aligned} \sup _{0\le t\le T}(\Vert u\Vert _{H^{s}}+\Vert w\Vert _{H^{s}})\le C(T)<\infty . \end{aligned}$$

By the equivalent norm, we get

$$\begin{aligned} \Vert u(t_{1})-u(t_{2})\Vert _{H^{s}}=\Big \{\Big (\sum _{k<N}+ \sum _{k\ge N}\Big ) \Big (2^{ks}\Vert \Delta _{k}u(t_{1}\Big )-\Delta _{k}u(t_{2})\Vert _{L^{2}})^{2} \Big \}^{\frac{1}{2}}. \end{aligned}$$
(C.5)

Let \(\varepsilon >0\) be arbitrarily small. Thanks to \(u\in L^{\infty }([0, T]; H^{s}({\mathbb {R}}^{3}))\), there exists an integer \(N=N(\varepsilon )>0\) such that

$$\begin{aligned} \Big \{\sum _{k\ge N} (2^{ks}\Vert \Delta _{k}u(t_{1})-\Delta _{k}u(t_{2})\Vert _{L^{2}})^{2} \Big \}^{\frac{1}{2}}<\frac{\varepsilon }{2}. \end{aligned}$$
(C.6)

Appealing to (C.4)\({}_{1}\) implies

$$\begin{aligned} \Delta _{k}u(t_{1})-\Delta _{k}u(t_{2})&= \int _{t_{1}}^{t_{2}}{\frac{d}{d\tau } \Delta _{k}u(\tau )\,d\tau }\\&= -\int _{t_{1}}^{t_{2}}{ \Delta _{k}{\mathcal {P}}[\nabla \times w+(u\cdot \nabla ) u+ \Lambda ^{2\alpha } u](\tau )\,d\tau }. \end{aligned}$$

This allows us to derive

$$\begin{aligned}&\sum _{k<N} 2^{2ks}\Vert \Delta _{k}u(t_{1})-\Delta _{k}u(t_{2})\Vert _{L^{2}}^{2}\\&\quad = \sum _{k<N} 2^{2ks}\Big (\Big \Vert \int _{t_{1}}^{t_{2}}{ \Delta _{k}{\mathcal {P}}[\nabla \times w+(u\cdot \nabla ) u+\Lambda ^{2\alpha } u](\tau )\,d\tau }\Big \Vert _{L^{2}}\Big )^{2}\\&\quad \le \sum _{k<N} 2^{2ks}\Big (\int _{t_{1}}^{t_{2}}{ \Vert \Delta _{k}[\nabla \times w+(u\cdot \nabla ) u+\Lambda ^{2\alpha } u]\Vert _{L^{2}}(\tau )\,d\tau }\Big )^{2}\\&\quad \le \sum _{k<N} 2^{2ks}\Big (\int _{t_{1}}^{t_{2}}{ [\Vert \Delta _{k}\nabla \times w \Vert _{L^{2}}+ \Vert \Vert \Delta _{k}(u\cdot \nabla u)\Vert _{L^{2}}+ \Vert \Vert \Delta _{k}\Lambda ^{2\alpha }u\Vert _{L^{2}}](\tau )\,d\tau }\Big )^{2} \\&\quad = \sum _{k<N} 2^{2k}\Big (\int _{t_{1}}^{t_{2}}{ 2^{k(s-1)}\Vert \Delta _{k}\nabla \times w (\tau )\Vert _{L^{2}}\,d\tau }\Big )^{2}\\&\quad \quad + \sum _{k<N} 2^{2k}\Big (\int _{t_{1}}^{t_{2}}{ 2^{k(s-1)}\Vert \Delta _{k}\nabla \cdot (u\otimes u)(\tau )\Vert _{L^{2}} \,d\tau }\Big )^{2}\\&\quad \quad + \sum _{k<N} 2^{4\alpha k}\Big (\int _{t_{1}}^{t_{2}}{ 2^{ks}\Vert \Delta _{k}u(\tau )\Vert _{L^{2}}\,d\tau }\Big )^{2}\\&\quad \le C\sum _{k<N} 2^{2k}\Big (\Vert w\Vert _{L_{t}^{\infty }H^{s}}^{2}|t_{1}-t_{2}|^{2} +\Vert uu\Vert _{L_{t}^{\infty }H^{s}}^{2}|t_{1}-t_{2}|^{2} \Big )\\&\quad \quad +C\sum _{k<N} 2^{4\alpha k} |t_{1}-t_{2}|^{2} \Vert u\Vert _{L_{t}^{\infty }H^{s}}^{2} \\&\quad \le C\sum _{k<N} 2^{2k}|t_{1}-t_{2}|^{2}\Big (\Vert w\Vert _{L_{t}^{\infty }H^{s}}^{2}+ \Vert u\Vert _{L_{t}^{\infty }L^{\infty }}^{2}\Vert u\Vert _{L_{t}^{\infty }H^{s}}^{2}\Big )\\&\quad \quad +C\sum _{k<N} 2^{4\alpha k} |t_{1}-t_{2}|^{2} \Vert u\Vert _{L_{t}^{\infty }H^{s}}^{2} \\&\quad \le C 2^{2N}|t_{1}-t_{2}|^{2}\Big (\Vert w\Vert _{L_{t}^{\infty }H^{s}}^{2}+\Vert u\Vert _{L_{t}^{\infty } H^{s}}^{4} \Big )+C2^{4\alpha N} |t_{1}-t_{2}|^{2} \Vert u\Vert _{L_{t}^{\infty }H^{s}}^{2}, \end{aligned}$$

which implies

$$\begin{aligned} \Big \{\sum _{k<N} (2^{ks}\Vert \Delta _{k}u(t_{1})-\Delta _{k}u(t_{2})\Vert _{L^{2}})^{2} \Big \}^{\frac{1}{2}}<\frac{\varepsilon }{2} \end{aligned}$$
(C.7)

provided that \(|t_{1}-t_{2}|\) is small enough. The desired \(u\in C([0, T]; H^{s}({\mathbb {R}}^{3})\) follows from (C.5), (C.6) and (C.7). Since (uw) are all in Lipschitz space, the uniqueness follows directly (see the end of Sect. 2). This completes the proof of Proposition C.1. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Wu, J. & Ye, Z. Global Regularity of the Three-Dimensional Fractional Micropolar Equations. J. Math. Fluid Mech. 22, 28 (2020). https://doi.org/10.1007/s00021-020-0490-x

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-020-0490-x

Keywords

Mathematics Subject Classification

Navigation